izpis_h1_title_alt

Primerjava prometnih trendov na podlagi računskih analiz štetja prometa
ID RATEJ, LUKA (Author), ID Moškon, Miha (Mentor) More about this mentor... This link opens in a new window, ID Verovšek, Špela (Comentor)

.pdfPDF - Presentation file, Download (1,18 MB)
MD5: 8C025380234F74ACA2424914F184702B

Abstract
V gosto poseljenih urbanih območjih je za optimalno delovanje sistema mobilnosti ključnega pomena razumevanje prometnih tokov. Z boljšim razumevanjem tokov lahko te bolje nadzorujemo in dolgoročno tudi usmerjamo. V mestih in na avtocestah je štetje prometa eden od tradicionalnih pristopov k pridobivanju podatkov o stanju prometnih cestnih tokov. Tovrstno štetje opravljajo različni senzorji in podsistemi. S pomočjo podatkov senzorjev sem ustvaril podsistem, ki analizira in poskuša napovedati vrednosti podatkov tudi na drugih prometnih odsekih in poteh. Do končnega cilja sem prišel z uporabo različnih tehnik in metod. Nad podatki sem najprej opravil nekaj osnovnih statističnih analiz, da sem razumel kaj predstavljajo in kako so povezani. Delo sem nadaljeval s tehnikami podatkovnega rudarjenja in poskusil napovedati vrednosti podatkov.

Language:Slovenian
Keywords:prometni trendi, upravljanje prometa, podatkovna analiza, podatkovno rudarjenje, strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-154913 This link opens in a new window
COBISS.SI-ID:189018115 This link opens in a new window
Publication date in RUL:08.03.2024
Views:622
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Application of Traffic Counters to the Comparative Analysis of Traffic Trends
Abstract:
One of the biggest problems highly populated urban areas face today, is inefficient mobility, especially when manifested as traffic congestions. Therefore, understanding traffic congestions and flows is a key insight needed for solving these issues. Cities and highways are traditionally well covered by traffic monitoring systems. The network of these systems is continuously being developed. Such systems aim to detect congestion in different ways. With data from the vehicle counting system, I have created a model, which analyzes and tries to predict values of the system. I have performed the targeted analyses with the use of different techniques and methods. I started off with a basic statistical analysis, to better understand the presented data and connections between its values. I continued with data mining approaches and tried to predict certain data values.

Keywords:traffic trends, traffic monitoring, data analysis, data mining, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back