izpis_h1_title_alt

Hourly rainfall-runoff modelling by combining the conceptual model with machine learning models in mostly karst Ljubljanica River catchment in Slovenia
ID Sezen, Cenk (Avtor), ID Šraj, Mojca (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (5,02 MB)
MD5: C5DF44C784D2973102948C62828920AF
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00477-023-02607-w Povezava se odpre v novem oknu

Izvleček
Hydrological modelling, essential for water resources management, can be very complex in karst catchments with different climatic and geologic characteristics. In this study, three combined conceptual models incorporating the snow module with machine learning models were used for hourly rainfall-runoff modelling in the mostly karst Ljubljanica River catchment, Slovenia. Wavelet-based Extreme Learning Machine (WELM) and Wavelet-based Regression Tree (WRT) machine learning models were integrated into the conceptual CemaNeige Génie Rural à 4 paramètres Horaires (CemaNeige GR4H). In this regard, the performance of the hybrid models was compared with stand-alone conceptual and machine learning models. The stand-alone WELM and WRT models using only meteorological variables performed poorly for hourly runoff forecasting. The CemaNeige GR4H model as stand-alone model yielded good performance; however, it overestimated low flows. The hybrid CemaNeige GR4H-WELM and CemaNeige-WRT models provided better simulation results than the stand-alone models, especially regarding the extreme flows. The results of the study demonstrated that using different variables from the conceptual model, including the snow module, in the machine learning models as input data can significantly affect the performance of rainfall-runoff modelling. The hybrid modelling approach can potentially improve runoff simulation performance in karst catchments with diversified geological formations where the rainfall-runoff process is more complex.

Jezik:Angleški jezik
Ključne besede:conceptual model with snow module, hourly data, hybrid modelling, karst, Ljubljanica river catchment, machine learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 937–961
Številčenje:Vol. 38, iss. 3
PID:20.500.12556/RUL-154832 Povezava se odpre v novem oknu
UDK:556.165
ISSN pri članku:1436-3240
DOI:10.1007/s00477-023-02607-w Povezava se odpre v novem oknu
COBISS.SI-ID:174114563 Povezava se odpre v novem oknu
Datum objave v RUL:05.03.2024
Število ogledov:478
Število prenosov:53
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Stochastic environmental research and risk assessment
Skrajšan naslov:Stoch. environ. res. risk assess.
Založnik:Springer Nature
ISSN:1436-3240
COBISS.SI-ID:512334873 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:konceptualni model s snežnim modulom, urni podatki, hibridno modeliranje, kras, porečje reke Ljubljanice, strojno učenje

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0180
Naslov:Vodarstvo in geotehnika: orodja in metode za analize in simulacije procesov ter razvoj tehnologij

Financer:Drugi - Drug financer ali več financerjev
Program financ.:UNESCO, IHP, Slovenian national committee
Številka projekta:C3330-20–456010

Financer:Drugi - Drug financer ali več financerjev
Program financ.:UNESCO, Chair on Waterrelated Disaster Risk Reduction

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj