izpis_h1_title_alt

Packings in bipartite prisms and hypercubes
ID Brešar, Boštjan (Author), ID Klavžar, Sandi (Author), ID Rall, Douglas F. (Author)

.pdfPDF - Presentation file, Download (231,57 KB)
MD5: BC4297894DBBF84BEE1923433A1D0D53
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0012365X24000062 This link opens in a new window

Abstract
The $2$-packing number $\rho_2(G)$ of a graph $G$ is the cardinality of a largest $2$-packing of $G$ and the open packing number $\rho^{\rm o}(G)$ is the cardinality of a largest open packing of $G$, where an open packing (resp. $2$-packing) is a set of vertices in $G$ no two (closed) neighborhoods of which intersect. It is proved that if $G$ is bipartite, then $\rho^{\rm o}(G\Box K_2) = 2\rho_2(G)$. For hypercubes, the lower bounds $\rho_2(Q_n) \ge 2^{n - \lfloor \log n\rfloor -1}$ and $\rho^{\rm o}(Q_n) \ge 2^{n - \lfloor \log (n-1)\rfloor -1}$ are established. These findings are applied to injective colorings of hypercubes. In particular, it is demonstrated that $Q_9$ is the smallest hypercube which is not perfect injectively colorable. It is also proved that $\gamma_t(Q_{2^k}\times H) = 2^{2^k-k}\gamma_t(H)$, where $H$ is an arbitrary graph with no isolated vertices.

Language:English
Keywords:2-packing number, open packing number, bipartite prism, hypercube, injective coloring, total domination number
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2024
Number of pages:6 str.
Numbering:Vol. 347, iss. 4, art. 113875
PID:20.500.12556/RUL-154513 This link opens in a new window
UDC:519.17
ISSN on article:0012-365X
DOI:10.1016/j.disc.2024.113875 This link opens in a new window
COBISS.SI-ID:181387523 This link opens in a new window
Publication date in RUL:19.02.2024
Views:755
Downloads:40
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Discrete mathematics
Shortened title:Discrete math.
Publisher:Elsevier
ISSN:0012-365X
COBISS.SI-ID:1118479 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:2-pakirno število, odprto pakirno število, dvodelna prizma, hiperkocke, injektivno barvanje, celotno dominacijsko število

Projects

Funder:ARRS - Slovenian Research Agency
Project number:BI-US/22-24-038
Name:Domination in graphs, digraphs and their products

Funder:ARRS - Slovenian Research Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARRS - Slovenian Research Agency
Project number:J1-2452
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARRS - Slovenian Research Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:ARRS - Slovenian Research Agency
Project number:J1-3002
Name:Prirejanja in barvanja povezav v kubičnih grafih

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back