izpis_h1_title_alt

Oka domains in Euclidean spaces
ID Forstnerič, Franc (Author), ID Wold, Erlend Fornæss (Author)

URLURL - Source URL, Visit https://academic.oup.com/imrn/article/2024/3/1801/7046029 This link opens in a new window
.pdfPDF - Presentation file, Download (278,96 KB)
MD5: 9584BE27082D1363DAC666D0801A4741

Abstract
In this paper, we find surprisingly small Oka domains in Euclidean spaces $\mathbb C^n$ of dimension $n>1$ at the very limit of what is possible. Under a mild geometric assumption on a closed unbounded convex set $E$ in $\mathbb C^n$, we show that $\mathbb C^n\setminus E$ is an Oka domain. In particular, there are Oka domains only slightly bigger than a halfspace, the latter being neither Oka nor hyperbolic. This gives smooth families of real hypersurfaces $\Sigma_t \subset \mathbb C^n$ for $t \in \mathbb R$ dividing $\mathbb C^n$ in an unbounded hyperbolic domain and an Oka domain such that at $t=0$, $\Sigma_0$ is a hyperplane and the character of the two sides gets reversed. More generally, we show that if $E$ is a closed set in $\mathbb C^n$ for $n>1$ whose projective closure $\overline E \subset \mathbb{CP}^n$ avoids a hyperplane $\Lambda \subset \mathbb{CP}^n$ and is polynomially convex in $\mathbb{CP}^n\setminus \Lambda\cong\mathbb C^n$, then $\mathbb C^n\setminus E$ is an Oka domain.

Language:English
Keywords:Oka manifold, hyperbolic manifolds, density property, projectively convex sets
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.02.2024
Year:2024
Number of pages:Str. 1801-1824
Numbering:Vol. 2024, iss. 3
PID:20.500.12556/RUL-154512 This link opens in a new window
UDC:517.5
ISSN on article:1687-0247
DOI:10.1093/imrn/rnac347 This link opens in a new window
COBISS.SI-ID:143307011 This link opens in a new window
Publication date in RUL:19.02.2024
Views:722
Downloads:54
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:International mathematics research notices
Shortened title:Int. math. res. not.
Publisher:Duke University Press, Hindawi Publishing Corporation
ISSN:1687-0247
COBISS.SI-ID:515379993 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:mnogoterost Oka, hiperbolične mnogoterosti, lastnost gostote, projektivno konveksna množica

Projects

Funder:EC - European Commission
Funding programme:European Commission
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-3005-2021
Name:Kompleksna in geometrijska analiza

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0237-2022
Name:Holomorfne parcialne diferencialne relacije

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0291-2022
Name:Analiza in geometrija

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back