Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Oka domains in Euclidean spaces
ID
Forstnerič, Franc
(
Author
),
ID
Wold, Erlend Fornæss
(
Author
)
URL - Source URL, Visit
https://academic.oup.com/imrn/article/2024/3/1801/7046029
PDF - Presentation file,
Download
(278,96 KB)
MD5: 9584BE27082D1363DAC666D0801A4741
Image galllery
Abstract
In this paper, we find surprisingly small Oka domains in Euclidean spaces $\mathbb C^n$ of dimension $n>1$ at the very limit of what is possible. Under a mild geometric assumption on a closed unbounded convex set $E$ in $\mathbb C^n$, we show that $\mathbb C^n\setminus E$ is an Oka domain. In particular, there are Oka domains only slightly bigger than a halfspace, the latter being neither Oka nor hyperbolic. This gives smooth families of real hypersurfaces $\Sigma_t \subset \mathbb C^n$ for $t \in \mathbb R$ dividing $\mathbb C^n$ in an unbounded hyperbolic domain and an Oka domain such that at $t=0$, $\Sigma_0$ is a hyperplane and the character of the two sides gets reversed. More generally, we show that if $E$ is a closed set in $\mathbb C^n$ for $n>1$ whose projective closure $\overline E \subset \mathbb{CP}^n$ avoids a hyperplane $\Lambda \subset \mathbb{CP}^n$ and is polynomially convex in $\mathbb{CP}^n\setminus \Lambda\cong\mathbb C^n$, then $\mathbb C^n\setminus E$ is an Oka domain.
Language:
English
Keywords:
Oka manifold
,
hyperbolic manifolds
,
density property
,
projectively convex sets
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.02.2024
Year:
2024
Number of pages:
Str. 1801-1824
Numbering:
Vol. 2024, iss. 3
PID:
20.500.12556/RUL-154512
UDC:
517.5
ISSN on article:
1687-0247
DOI:
10.1093/imrn/rnac347
COBISS.SI-ID:
143307011
Publication date in RUL:
19.02.2024
Views:
722
Downloads:
54
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
International mathematics research notices
Shortened title:
Int. math. res. not.
Publisher:
Duke University Press, Hindawi Publishing Corporation
ISSN:
1687-0247
COBISS.SI-ID:
515379993
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
mnogoterost Oka
,
hiperbolične mnogoterosti
,
lastnost gostote
,
projektivno konveksna množica
Projects
Funder:
EC - European Commission
Funding programme:
European Commission
Project number:
101053085
Name:
Holomorphic Partial Differential Relations
Acronym:
HPDR
Funder:
ARRS - Slovenian Research Agency
Funding programme:
Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:
J1-3005-2021
Name:
Kompleksna in geometrijska analiza
Funder:
ARRS - Slovenian Research Agency
Funding programme:
Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:
N1-0237-2022
Name:
Holomorfne parcialne diferencialne relacije
Funder:
ARRS - Slovenian Research Agency
Funding programme:
Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:
P1-0291-2022
Name:
Analiza in geometrija
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back