Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
On orders of automorphisms of vertex-transitive graphs
ID
Potočnik, Primož
(
Author
),
ID
Toledo, Micael
(
Author
),
ID
Verret, Gabriel
(
Author
)
PDF - Presentation file,
Download
(680,86 KB)
MD5: AF102496FFECCFD84678D95EBF0818A6
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/pii/S0095895624000029
Image galllery
Abstract
In this paper we investigate orders, longest cycles and the number of cycles of automorphisms of finite vertex-transitive graphs. In particular, we show that the order of every automorphism of a connected vertex-transitive graph with $n$ vertices and of valence $d$, $d\le 4$, is at most $c_d n$ where $c_3=1$ and $c_4 = 9$. Whether such a constant $c_d$ exists for valencies larger than $4$ remains an unanswered question. Further, we prove that every automorphism $g$ of a finite connected $3$-valent vertex-transitive graph $\Gamma$, $\Gamma \not\cong K_{3,3}$, has a regular orbit, that is, an orbit of $\langle g \rangle$ of length equal to the order of $g$. Moreover, we prove that in this case either $\Gamma$ belongs to a well understood family of exceptional graphs or at least $5/12$ of the vertices of $\Gamma$ belong to a regular orbit of $g$. Finally, we give an upper bound on the number of orbits of a cyclic group of automorphisms $C$ of a connected $3$-valent vertex-transitive graph $\Gamma$ in terms of the number of vertices of $\Gamma$ and the length of a longest orbit of $C$.
Language:
English
Keywords:
graphs
,
automorphism groups
,
vertex-transitive
,
regular orbit
,
cubic
,
tetravalent
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2024
Number of pages:
Str. 123-153
Numbering:
Vol. 166
PID:
20.500.12556/RUL-154511
UDC:
519.17
ISSN on article:
0095-8956
DOI:
10.1016/j.jctb.2024.01.001
COBISS.SI-ID:
182607619
Publication date in RUL:
19.02.2024
Views:
484
Downloads:
36
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Journal of combinatorial theory
Shortened title:
J. comb. theory, Ser. B
Publisher:
Elsevier
ISSN:
0095-8956
COBISS.SI-ID:
25721600
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0294
Name:
Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-1691
Name:
Weissova domneva in posplošitve
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4351
Name:
Generiranje, analiza in katalogizacija simetričnih grafov
Funder:
Other - Other funder or multiple funders
Funding programme:
Communauté Francaise Wallonie Bruxelles, Action de Recherche Concertée
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back