izpis_h1_title_alt

On orders of automorphisms of vertex-transitive graphs
ID Potočnik, Primož (Author), ID Toledo, Micael (Author), ID Verret, Gabriel (Author)

.pdfPDF - Presentation file, Download (680,86 KB)
MD5: AF102496FFECCFD84678D95EBF0818A6
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0095895624000029 This link opens in a new window

Abstract
In this paper we investigate orders, longest cycles and the number of cycles of automorphisms of finite vertex-transitive graphs. In particular, we show that the order of every automorphism of a connected vertex-transitive graph with $n$ vertices and of valence $d$, $d\le 4$, is at most $c_d n$ where $c_3=1$ and $c_4 = 9$. Whether such a constant $c_d$ exists for valencies larger than $4$ remains an unanswered question. Further, we prove that every automorphism $g$ of a finite connected $3$-valent vertex-transitive graph $\Gamma$, $\Gamma \not\cong K_{3,3}$, has a regular orbit, that is, an orbit of $\langle g \rangle$ of length equal to the order of $g$. Moreover, we prove that in this case either $\Gamma$ belongs to a well understood family of exceptional graphs or at least $5/12$ of the vertices of $\Gamma$ belong to a regular orbit of $g$. Finally, we give an upper bound on the number of orbits of a cyclic group of automorphisms $C$ of a connected $3$-valent vertex-transitive graph $\Gamma$ in terms of the number of vertices of $\Gamma$ and the length of a longest orbit of $C$.

Language:English
Keywords:graphs, automorphism groups, vertex-transitive, regular orbit, cubic, tetravalent
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2024
Number of pages:Str. 123-153
Numbering:Vol. 166
PID:20.500.12556/RUL-154511 This link opens in a new window
UDC:519.17
ISSN on article:0095-8956
DOI:10.1016/j.jctb.2024.01.001 This link opens in a new window
COBISS.SI-ID:182607619 This link opens in a new window
Publication date in RUL:19.02.2024
Views:484
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of combinatorial theory
Shortened title:J. comb. theory, Ser. B
Publisher:Elsevier
ISSN:0095-8956
COBISS.SI-ID:25721600 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0294
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Funder:ARRS - Slovenian Research Agency
Project number:J1-1691
Name:Weissova domneva in posplošitve

Funder:ARRS - Slovenian Research Agency
Project number:J1-4351
Name:Generiranje, analiza in katalogizacija simetričnih grafov

Funder:Other - Other funder or multiple funders
Funding programme:Communauté Francaise Wallonie Bruxelles, Action de Recherche Concertée

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back