izpis_h1_title_alt

Analiza preživetja in strojno učenje za ocenjevanje kreditnih tveganj : magistrsko delo
ID Mramor, Anže (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Rebolj Kodre, Anamarija (Comentor)

.pdfPDF - Presentation file, Download (1,69 MB)
MD5: 2F95D87DA995A490FF0ADD16372AE87B

Abstract
V tem magistrskem delu se ukvarjamo z gradnjo modelov za ocenjevanje kreditnega tveganja na podlagi konkretnih podatkov o kreditnih poslih, ki smo jih pridobili od slovenske banke. Uporabljamo dva pristopa gradnje napovednih modelov iz podatkov, klasične metode strojnega učenja in njihovo kombinacijo z metodami analize preživetja. Osrednje vprašanje našega dela je, ali lahko analiza preživetja izboljša napovedi neplačil kreditov v primerjavi s klasičnimi metodami. V okviru raziskave smo primerjali napovedno zmogljivost obeh pristopov ob uporabi modelov, ki temeljijo na odločitvenih drevesih in naključnih gozdovih. Rezultati so pokazali, da klasični algoritmi strojnega učenja na učni množici dosegajo višjo napovedno zmogljivost kot metode na podlagi analize preživetja. Tudi na testni množici so klasični algoritmi pokazali nekoliko višjo zmogljivost, vendar sta bila tu pristopa primerljiva. Pri klasičnih algoritmih strojnega učenja je prišlo do izrazitega preprileganja, medtem ko se je metoda analize preživetja izkazala kot precej odporna nanj. Sklepamo torej, da kljub določenim prednostim analiza preživetja sama po sebi ne zagotavlja izboljšanja napovedi v primerjavi s klasičnimi metodami strojnega učenja.

Language:Slovenian
Keywords:kreditno tveganje, strojno učenje, odločitvena drevesa, naključni gozdovi, analiza preživetja
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-154191 This link opens in a new window
UDC:519.2
COBISS.SI-ID:182945027 This link opens in a new window
Publication date in RUL:31.01.2024
Views:524
Downloads:99
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Survival analysis and machine learning for predicting credit risks
Abstract:
In this master's thesis, we focus on building models for the assessment of credit risk using actual data of credit transactions obtained from a Slovenian bank. We use two approaches to construct predictive models from data: traditional machine learning methods and their combination with survival analysis methods. The main question of our work is whether survival analysis can improve the predictions of credit defaults compared to classic methods. Within the research framework, we compared the predictive performance of both approaches using models based on decision trees and random forests. The results showed that, on the training set, traditional machine learning algorithms reach higher predictive capability than survival analysis models. Traditional algorithms showed slightly higher predictive performance on the test set, but both approaches were comparable here. There was significant overfitting with traditional machine learning algorithms, while the survival analysis method proved to be quite resistant to it. We, therefore, conclude that despite certain advantages, survival analysis does not guarantee an improvement in predictions compared to traditional machine learning methods.

Keywords:credit risk, machine learning, decision trees, random forests, survival analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back