izpis_h1_title_alt

Dense attention network identifies EEG abnormalities during working memory performance of patients with schizophrenia
ID Perellón Alfonso, Ruben (Avtor), ID Oblak, Aleš (Avtor), ID Kuclar, Matija (Avtor), ID Škrlj, Blaž (Avtor), ID Škodlar, Borut (Avtor), ID Pregelj, Peter (Avtor), ID Repovš, Grega (Avtor), ID Bon, Jurij (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,26 MB)
MD5: 4C376F9C3E79B8D8AD14DDD6F5CE1994
URLURL - Izvorni URL, za dostop obiščite https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1205119/full Povezava se odpre v novem oknu

Izvleček
Introduction: Patients with schizophrenia typically exhibit deficits in working memory (WM) associated with abnormalities in brain activity. Alterations in the encoding, maintenance and retrieval phases of sequential WM tasks are well established. However, due to the heterogeneity of symptoms and complexity of its neurophysiological underpinnings, differential diagnosis remains a challenge. We conducted an electroencephalographic (EEG) study during a visual WM task in fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that EEG abnormalities during the task could be identified, and patients successfully classified by an interpretable machine learning algorithm. Methods: We tested a custom dense attention network (DAN) machine learning model to discriminate patients from control subjects and compared its performance with simpler and more commonly used machine learning models. Additionally, we analyzed behavioral performance, event-related EEG potentials, and time-frequency representations of the evoked responses to further characterize abnormalities in patients during WM. Results: The DAN model was significantly accurate in discriminating patients from healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences between groups, conditions, or their interaction in behavioral performance or event-related potentials. However, patients showed significantly lower alpha suppression in the task preparation, memory encoding, maintenance, and retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that the two highest peaks in the attention value vector of the DAN model overlapped in time with the preparation and memory retrieval phases, as well as with two of the four significant time-frequency ROIs. Discussion: These results highlight the potential utility of interpretable machine learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric disorders presenting oscillatory abnormalities.

Jezik:Angleški jezik
Ključne besede:schizophrenia, working memory, contralateral delay negativity, electroencephalography EEG, dense attention network DAN
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FF - Filozofska fakulteta
MF - Medicinska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:12 str.
Številčenje:Vol. 14, art. 1205119
PID:20.500.12556/RUL-153575 Povezava se odpre v novem oknu
UDK:159.91:616.895.8
ISSN pri članku:1664-0640
DOI:10.3389/fpsyt.2023.1205119 Povezava se odpre v novem oknu
COBISS.SI-ID:166182915 Povezava se odpre v novem oknu
Datum objave v RUL:16.01.2024
Število ogledov:425
Število prenosov:142
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Frontiers in psychiatry
Skrajšan naslov:Front. psychiatry
Založnik:Frontiers Research Foundation
ISSN:1664-0640
COBISS.SI-ID:54153314 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:shizofrenija, delovni spomin, elektroencefalografija EEG, kontralateralna negativnost, gosto pozornostno omrežje

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:"la Caixa” Foundation
Številka projekta:100010434, LCF/BQ/DI19/11730050
Naslov:“la Caixa” Foundation

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Spanish Ministry of Science and Innovation
Številka projekta:FJC2021-047380- I
Naslov:Juan de la Cierva-Formacion research grant

Financer:Drugi - Drug financer ali več financerjev
Program financ.:"la Caixa” Foundation
Številka projekta:100010434, LCF/BQ/DI18/11660026
Naslov:“la Caixa” Foundation

Financer:Drugi - Drug financer ali več financerjev
Program financ.:European Union’s Horizon 2020
Številka projekta:713673
Naslov:Marie Skłodowska-Curie grant

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P5-0110
Naslov:Psihološki in nevroznanstveni vidiki kognicije

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P3-0338
Naslov:Fiziološki mehanizmi nevroloških motenj in bolezni

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J3-1763
Naslov:Vpliv individualizacije stimulacijske frekvence v realnem času na učinkovitost zdravljenja depresije s transkranialno magnetno stimulacijo

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J3-9264
Naslov:Razstavljanje kognicije: Mehanizmi in reprezentacije delovnega spomina

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj