izpis_h1_title_alt

Uporaba konvolucijskih nevronskih mrež za identifikacijo dvojnih zvezd
ID Gorše, Jan (Author), ID Zwitter, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Traven, Gregor (Comentor)

.pdfPDF - Presentation file, Download (4,90 MB)
MD5: 5D816C0A766E4175368C39931A88866F

Abstract
Strojno učenje je v sodobni fiziki ključnega pomena za analizo velikih podatkovnih nizov. Eden izmed ciljev pregleda neba GALAH je raziskovanje gibanja in kemične sestave zvezd v naši galaksiji z namenom razumevanja njenega nastanka in razvoja. Za ta namen si prizadeva pridobiti spektre za milijon zvezd, kar predstavlja ogromno količino podatkov, ki jih ni mogoče pregledati ročno. Poseben izziv za GALAH predstavljajo dvojne zvezde, saj lahko njihova prisotnost vpliva na napačno interpretacijo spektrov. Da bi se temu izognili in hkrati v prihodnosti čim bolj avtomatsko označevali te posebne spektre za nadaljnje preučevanje, smo s pomočjo klasifikacij spektrov, narejenih v sklopu projekta GALAH z drugimi metodami razvili več modelov konvolucijskih nevronskih mrež, prilagojenih za klasifikacijo zvezdnih spektrov v razred enojnih ali dvojnih zvezd. Vsak model je bil razvit z različnimi arhitekturnimi odločitvami, vključno z različnimi števili plasti, velikostmi filtrov in drugimi hiperparametri. Naši eksperimenti so pokazali, da ponavadi dajo večplastne arhitekture boljše rezultate, zlasti pri prepoznavanju dvojnih zvezd. Odkrili smo tudi, da določeni zvezdni parametri, kot so temperatura in površinska gravitacija, vplivajo na točnost klasifikacije. Dodatno smo pokazali, da so spektri z večjimi razlikami v radialnih hitrostih bolj točno klasificirani. Delež pravilno klasificiranih enojnih zvezd je bil večji kot delež pravilno klasificiranih dvojnih zvezd. Čeprav so se konvolucijske nevronske mreže izkazale za močno orodje za klasifikacijo zvezdnih spektrov, ostaja še veliko vprašanj o tem, kako točno se signal, ki nakazuje na dvojnost zvezde, transformira v izhodno vrednost nevronske mreže.

Language:Slovenian
Keywords:dvojne zvezde, konvolucijske nevronske mreže, pregled neba GALAH, zvezdni parametri, klasifikacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-153428 This link opens in a new window
COBISS.SI-ID:178170883 This link opens in a new window
Publication date in RUL:05.01.2024
Views:603
Downloads:67
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of convolutional neural networks for identification of binary stars
Abstract:
Machine learning is crucial in modern physics for analysing large datasets. One of the goals of the GALAH sky survey is to research the motions and the chemical composition of stars in our galaxy in order to understand its formation and evolution. To this end, it aims to obtain spectra for one million stars, which represents a huge amount of data that cannot be examined manually. Binary stars pose a particular challenge for GALAH, as their presence can lead to misinterpretation of spectra. To avoid this and at the same time to flag these specific spectra as automatically as possible for further study in the future, we have developed several convolutional neural network models for to the classification of stellar spectra into single or binary stars class, using the spectrum classifiers produced in the GALAH project with other methods. Each model was developed with different architectural choices, including different numbers of layers, filter sizes and other hyperparameters. Our experiments showed that layered architectures tend to give better results, especially for binary star identification. We also found that certain stellar parameters, such as temperature and surface gravity, affect the classification accuracy. Additionally, we have shown that spectra with larger differences in radial velocities are more accurately classified. The fraction of correctly classified single stars was higher than the fraction of correctly classified binary stars. Although convolutional neural networks have proven to be a powerful tool for classifying stellar spectra, many questions remain about how exactly the signal indicating a binary star is transformed into the output of the neural network.

Keywords:binary stars, convolutional neural networks, GALAH survey, stellar parameters, classification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back