izpis_h1_title_alt

Integracija umetne inteligence in tehnologije CRISPR-Cas
ID Bevk, Theo (Author), ID Jakše, Jernej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,15 MB)
MD5: 4DD232F7CF840FFF3A83C06ECFED9B02

Abstract
CRISPR-Cas je revolucionarno orodje za preurejanje genomov, ki je spremenilo področje molekularne biologije, saj olajša in natančneje cilja praktično katero koli specifično genomsko zaporedje. Ena največjih pomanjkljivost tehnologije CRISPR-Cas so nezaželeni izventarčni (angl. off-target) učinki, predvsem izventarčne mutacije. Mutacije deoksiribonukleinske kisline, ki nastanejo s celičnim popravljanjem preloma dvojne vijačnice zaradi delovanja CRISPR-Cas, določajo njen fenotipski učinek. Znano je, da mutacijski rezultati niso naključni, ampak so odvisni od zaporedja deoksiribonukleinske kisline na ciljni lokaciji. Slednje dejstvo in hitra rast področja umetne inteligence, sposobnosti strojev za izvajanje nalog, ki bi običajno zahtevale človeško inteligenco, sta raziskovalcem omogočila uporabo umetnega pridobivanja podatkov, pristope strojnega učenja in drugih načinov izrabljanja umetne inteligence, za oceno potencialnih tarčnih (angl. on-target) in izventarčnih (angl. off-target) učinkov, oblikovanje vodilne ribonukleinske kisline (gRNA) in analizo editiranih genomov. Vsi našteti dejavniki predstavljajo pomemben faktor za širšo uporabo tehnologije CRISPRCas na različnih znanstvenih področjih. Namen diplomskega dela je podrobno preučiti tehnologijo CRISPR-Cas in delovanje umetne inteligence ter možnosti integracije slednjih področij za zmanjšanje neželenih učinkov oziroma odpravo pomanjkljivosti orodja CRISPR-Cas in s tem zanesljivejšo ter širšo uporabo enega največjih odkritij s področja biotehnologije v zadnjih desetletjih.

Language:Slovenian
Keywords:umetna inteligenca, CRISPR-Cas, integracija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:BF - Biotechnical Faculty
Year:2023
PID:20.500.12556/RUL-153353 This link opens in a new window
COBISS.SI-ID:179046403 This link opens in a new window
Publication date in RUL:23.12.2023
Views:618
Downloads:143
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Integration of artificial intelligence with CRISPR-Cas technology
Abstract:
CRISPR-Cas is a revolutionary genome editing tool that has profoundly transformed the field of molecular biology by affording a heightened precision in targeting a wide array of distinct genomic sequences. One of the most prominent limitations of CRISPR-Cas technology are unwanted off-target effects, especially off-target mutations. Deoxyribonucleic acid mutations generated by cellular repair of a double helix break by CRISPR-Cas action determine its phenotypic effect. It is known that mutational outcomes are not random but depend on the deoxyribonucleic acid sequence at the target site. The latter fact and the rapid growth of the field of artificial intelligence, the ability of machines to perform tasks that would normally require human intelligence, have enabled researchers to use artificial data mining, machine learning approaches and other ways of using artificial intelligence to evaluate potential on-target and off-target effects, creation of guide ribonucleic acid (gRNA) and analysis of edited genomes. All of this progress is crucial for a wider use of CRISPR-Cas technology in various scientific fields. The purpose of this diploma thesis is to examine in detail the CRISPR-Cas technology and artificial intelligence, as well as the possibilities of integrating the latter areas to mitigate undesired effects or eliminate the shortcomings of the CRISPR-Cas toolkit. The aspiration is to engender a more dependable and expansive application of one of the most transformative discoveries in the realm of biotechnology witnessed in recent decades.

Keywords:artificial intelligence, CRISPR-Cas, integration

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back