izpis_h1_title_alt

Avtomatsko določanje ustreznosti PSG-elektronskih tiskanih vezij z metodami strojnega učenja : magistrsko delo
ID Sovdat, Sara (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Petković, Matej (Comentor)

.pdfPDF - Presentation file. The content of the document unavailable until 19.12.2024.
MD5: 8E681986A2DC163E3C6B044483C9A433

Abstract
V tem delu opišemo razvoj in implementacijo sistema za avtomatsko razvrščanje PSG-elektronskih vezij, ki deluje na podlagi strojnega učenja. Podamo pregled celotnega postopka, od urejanja podatkov do vpetja rešitve v proizvodni proces. Ker se srečamo z zelo neenakomerno porazdeljenimi podatki z dvema razredoma za ciljno spremenljivko, opišemo možnosti za manipulacijo učne množice po prinpcipu nadvzorčenja manjšinskega razreda. Podrobneje opišemo uporabljene algoritme strojnega učenja in algoritem TPE, ki temelji na Bayesovem pristopu iskanja optimalnih vrednosti hiperparametrov. Zaradi specifike podatkov in problema moramo za iskanje optimalne konfiguracije in vrednotenje modela definirati posebno uteženo metriko. Natančneje podamo opis implementacije in načina napovedovanja modela, nato pa še način integracije na proizvodno linijo. Zaključimo s predstavitvijo rezultatov.

Language:Slovenian
Keywords:strojno učenje, neenakomerno porazdeljeni podatki, dvojiška klasifikacija, ADASYN, TPE, optimizacija, digitalizacija, avtomobilska industrija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-153298 This link opens in a new window
UDC:004.42
COBISS.SI-ID:178269187 This link opens in a new window
Publication date in RUL:21.12.2023
Views:675
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic classification of PSG electronic printed circuit boards using machine learning methods
Abstract:
In this work, we describe the development and implementation of a system for the automatic classification of PSG electronic circuit boards using machine learning methods. We provide an overview of the entire process, from data preprocessing to integrating the solution into the production process. As we are dealing with highly imbalanced data with two classes for the target variable, we describe options for manipulating the training dataset through the principle of oversampling the minority class. We provide a more detailed description of the machine learning algorithms used and the TPE algorithm, which is based on the Bayesian approach to finding optimal hyperparameter values. Due to the specific nature of the data and the problem itself, we must define a special weighted metric for finding the optimal configuration and evaluating the model. We then give a detailed description of the implementation and the model prediction process, followed by the integration method into the production line. We conclude with the presentation of the results.

Keywords:machine learning, imbalanced data, binary classification, ADASYN, TPE, optimization, digitalization, automotive industry

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back