Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Hierarchical learning of robotic contact policies
ID
Simonič, Mihael
(
Avtor
),
ID
Ude, Aleš
(
Avtor
),
ID
Nemec, Bojan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,74 MB)
MD5: 4DA3F61EA4EE6ECBA9831DD48AF8AF51
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0736584523001321
Galerija slik
Izvleček
The paper addresses the issue of learning tasks where a robot maintains permanent contact with the environment. We propose a new methodology based on a hierarchical learning scheme coupled with task representation through directed graphs. These graphs are constituted of nodes and branches that correspond to the states and robotic actions, respectively. The upper level of the hierarchy essentially operates as a decision-making algorithm. It leverages reinforcement learning (RL) techniques to facilitate optimal decision-making. The actions are generated by a constraint-space following (CSF) controller that autonomously identifies feasible directions for motion. The controller generates robot motion by adjusting its stiffness in the direction defined by the Frenet–Serret frame, which is aligned with the robot path. The proposed framework was experimentally verified through a series of challenging robotic tasks such as maze learning, door opening, learning to shift the manual car gear, and learning car license plate light assembly by disassembly.
Jezik:
Angleški jezik
Ključne besede:
autonomous robot learning
,
learning
,
experience
,
compliance and impedance control
,
learning from experience
,
perception-action coupling
,
compliant assembly
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
12 str.
Številčenje:
Vol. 86, art. 102657
PID:
20.500.12556/RUL-153103
UDK:
004
ISSN pri članku:
1879-2537
DOI:
10.1016/j.rcim.2023.102657
COBISS.SI-ID:
164894211
Datum objave v RUL:
18.12.2023
Število ogledov:
738
Število prenosov:
45
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Robotics and computer-integrated manufacturing
Založnik:
Elsevier
ISSN:
1879-2537
COBISS.SI-ID:
18810902
Licence
Licenca:
CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:
Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
učenje
,
izkušnje
Projekti
Financer:
EC - European Commission
Program financ.:
H2020
Številka projekta:
871352
Naslov:
Self-reconfiguration of a robotic workcell for the recycling of electronic waste
Akronim:
ReconCycle
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0076
Naslov:
Avtomatika, robotika in biokibernetika
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj