izpis_h1_title_alt

Sistem za sledenje stikov z uporabo analize videa
ID Kastelec, Erik (Author), ID Emeršič, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Skočaj, Danijel (Comentor)

.pdfPDF - Presentation file, Download (5,78 MB)
MD5: F99380C8EAEBFCD12695C55D8117CDE4

Abstract
Pandemija COVID-19 je pokazala pomembnost sledenja stikov za omejitev širjenja okužb. Težava sistemov za sledenje, ki zahtevajo uporabo aplikacij in s tem obremenjujejo uporabnike, je, da se ne uporabljajo, ko pandemije ni. V tem magistrskem delu je predstavljen sistem za iskanje bližnjih stikov, ki predstavlja neinvazivno rešitev sledenja stikov v stavbah. Sistem je sestavljen iz dveh podsistemov. Podsistem za nadzor kamer nam omogoča, da upoštevanje varne razdalje med osebami spremljamo v živo in ga enostavno integriramo v obstoječe sisteme kamer. Podsistem za iskanje bližnjih stikov pa nam omogoča, da najdemo vse bližnje stike določene osebe, a le, ko je to zahtevano. S tem prihranimo vire in vzdržujemo zasebnost obiskovalcev. Za potrebe zaznave in identifikacije oseb je bil razvit učinkovit model Eff-SeqNet, ki se lahko izvaja in uči na grafičnih procesnih enotah, ki so dostopne končnim uporabnikom. S tem smo pokazali, da lahko s smiselno izbiro arhitekture modela dosežemo dober kompromis med natančnostjo in hitrostjo zaznave. Poleg učinkovitega modela smo predstavili cevovod iskanja stikov, ki izrablja informacije o lokaciji in povezavah med kamerami in s tem izboljša robustnost in učinkovitost sistema.

Language:Slovenian
Keywords:detekcija oseb, ponovna identifikacija, iskanje oseb, sledenje stikov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-152987 This link opens in a new window
COBISS.SI-ID:178646019 This link opens in a new window
Publication date in RUL:13.12.2023
Views:563
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Contact tracing system utilizing video analysis
Abstract:
The COVID-19 pandemic highlighted the importance of contact tracing to limit the spread of infections. The problem with tracing systems that require the use of apps and other approaches, which burden users, is that they often go unused outside of a pandemic. This master's thesis introduces a system for identifying close contacts, offering a non-invasive solution for contact tracing within buildings. The system comprises two parts: the camera surveillance system allows for real-time monitoring of social distancing between individuals and can be easily integrated into existing camera systems. The close-contact detection system enables us to identify all the close contacts of a specific person, but only when necessary. This conserves resources and maintains the privacy of visitors. For the purposes of detection and identification of individuals, an efficient model named Eff-SeqNet was developed, which can be used on graphical processing units available to end users. With this, we demonstrated that by making a thoughtful choice in model architecture, a good balance between detection accuracy and speed can be achieved. In addition to the new efficient model, we introduced a person search pipeline utilizing information about position and connections between cameras, which improves the robustness as well as the efficiency of our system.

Keywords:person detection, person re-identification, person search, contact tracing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back