izpis_h1_title_alt

Odkrivanje in klasifikacija intervalov desinhronizacije elektroencefalograma med zamišljanjem motoričnih aktivnosti
ID Kalem, Mateo (Author), ID Jager, Franc (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,76 MB)
MD5: 84945D14BAEA206901F944CFC4E97712

Abstract
V sklopu magistrske naloge smo razvili in ovrednotili postopek za odkrivanje in klasifikacijo intervalov dogodkovne desinhronizacije elektroencefalograma, ki se pojavljajo med zamišljanjem motoričnih aktivnosti leve in desne roke subjekta in tudi med dejanskimi motoričnimi aktivnostmi leve in desne roke. Razviti postopek omogoča npr. premikanje kurzorja po ekranu na osnovi samo zamišljanja motoričnih aktivnosti. Za razvoj smo uporabili posnetke elektroencefalograma podatkovne zbirke EEGMMI DS, ki je prosto dostopna na spletnih straneh repozitorija Physionet in vsebuje ročno označene intervale med katerimi so si subjekti zamišljali, ali pa izvajali, različne motorične aktivnosti. Kritična evaluacija posnetkov je pokazala, da nekateri posnetki ne kažejo pričakovanega upada amplitude signalov med intervali desinhronizacije, zato so bili ti posnetki z namenom pridobitve objektivnih in realističnih rezultatov obravnavani posebaj. Za prevedbo osnovnih signalov v prostor komponent smo uporabili dve metodi, metodo skupnih prostorskih vzorcev in metodo z uporabo velike Laplace-ove maske. Izbrana klasifikatorja sta bila klasifikator LDA in klasifikator QDA. Najvišja dosežena klasifikacijska točnost za intervale zamišljanja motoričnih aktivnosti ob uporabi metode skupnih prostorskih vzorcev in klasifikatorja QDA je znašala 93.30 %, medtem ko je bila ob uporabi velike Laplace-ove maske 87.31 %.

Language:Slovenian
Keywords:elektroencefalogram, dogodkovna desinhronizacija, motorične aktivnosti, izločanje značilk, klasifikacija intervalov motoričnih aktivnosti
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-152978 This link opens in a new window
COBISS.SI-ID:178632707 This link opens in a new window
Publication date in RUL:13.12.2023
Views:575
Downloads:71
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detection and classification of electroencephalogram desynchronization intervals during imagining of motor activities
Abstract:
In the scope of our master thesis, we developed and evaluated a procedure for detection and classification of event-related desynchronisation intervals of the electroencephalogram occurring during imagined motor activities of the left and right hand of a subject and also between the actual motor activities of the left and right hand. The developed procedure allows, for example, to move the cursor on the screen based on the imagined motor activities. For the development, we used electroencephalogram recordings of the EEGMMI DS database, freely available on the Physionet repository, which contains manually annotated intervals between which subjects imagined, or performed, different motor activities. Critical evaluation of the recordings showed that some of the recordings do not show the expected decrease in the signal amplitude between desynchronisation intervals, and therefore in order to obtain objective and realistic results, these recordings were treated separately. To translate the original signals into the component space, we used two methods, the common spatial patterns method and the large Laplacian mask. The classifiers chosen were the LDA and QDA classifiers. The highest achieved classification accuracy for the motor imagination intervals of activity for the common spatial patterns method and the QDA classifier was 93.30 %, while using the large Laplacian mask was 87.31 %.

Keywords:electroencephalogram, event related desynchronization, motor activities, feature extraction, classifying intervals of motor activies

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back