Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Razvrščanje signalov v posnetkih vibracijske krajine
ID
Štrus, Tomaž
(
Author
),
ID
Marolt, Matija
(
Mentor
)
More about this mentor...
,
ID
Pesek, Matevž
(
Comentor
)
PDF - Presentation file,
Download
(12,00 MB)
MD5: 7395AF513A2978FE6678C34AF961A534
Image galllery
Abstract
Vibracijska krajina je naravno vibracijsko okolje, sestavljeno iz bioloških, geofizikalnih in antropogenih vibracij. V tem še zelo neraziskanem svetu vibracijske krajine nas zanima predvsem vibracijska komunikacija žuželk. Zato smo v okviru magistrskega dela raziskali, kako uspešno detektirati oglašanja žuželk na posnetkih vibracijske krajine z uporabo različnih strojnih modelov. Učinkovitost različnih preprostih modelov strojnega učenja, kot je model SVC, smo primerjali z usmerjeno nevronsko mrežo. Te modele smo kombinirali s tradicionalnimi ročnimi značilkami, kot sta LFCC in MFCC, hibridnimi značilkami, ki združujejo obe prej omenjeni metodi, ter globokimi značilkami openl3. Poleg tega smo uporabili tudi globoka modela CNN in TFNet, ki nimata potrebe po predhodnem izračunu značilk. Z globokim modelom smo preizkusili tudi metode, kot je normalizacija PCEN in metodi obogatitve podatkov mixup in specAugment. Za detekcijo vseh oglašanj smo dobili najboljše rezultate s kombinacijo značilk openl3 in modela SVC, kjer smo dosegli 79,950-odstotno mero F1 na testnih podatkih.
Language:
Slovenian
Keywords:
šibko nadzorovano učenje
,
klasifikacija zvokov
,
vibracijska krajina
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2023
PID:
20.500.12556/RUL-152768
COBISS.SI-ID:
177616643
Publication date in RUL:
06.12.2023
Views:
1150
Downloads:
75
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠTRUS, Tomaž, 2023,
Razvrščanje signalov v posnetkih vibracijske krajine
[online]. Master’s thesis. [Accessed 17 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=152768
Copy citation
Share:
Secondary language
Language:
English
Title:
Signal classification in vibroscape recordings
Abstract:
Vibroscape is a naturally occurring vibrational environment composed of biological, geophysical, and anthropogenic vibrations. In this still largely unexplored realm of the vibrational landscape, our primary focus is on the vibrational communication of insects. Therefore, as part of our master's thesis, we examined the ability to detect insect calls in vibrospace recordings using various machine learning models. We compared the performance of manual features such as LFCC, MFCC, and the combination of both as hybrid features to the performance of deep features extracted using openl3. We compared the effectiveness of different simple machine learning models, such as the SVC model, with directed neural networks. We also employed deep CNN and TFNet models without pre-computed features, with PCEN normalization and data augmentation techniques like mixup and specAugment. For the detection of all insect calls, the best results were obtained using a combination of openl3 features and the SVC model, achieving an F1 score of 79.950% on the test data.
Keywords:
weakly-supervised learning
,
acoustic classification
,
vibroscape
Similar documents
Similar works from RUL:
Systematic review of observational studies evaluating the effectiveness and safety of immune checkpoint inhibitors in patients with metastatic non-small-cell lung cancer
Effectivness and safety of immunotherapy in patients with advanced non-small cell lung cancer in second line treatment at the University Clinic Golnik
Description of adverse event of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer treated at the University Clinic Golnik
ǂThe ǂpotential of immunotherapies in the treatment of lung cancer
Real-world outcomes of immunotherapy with or without chemotherapy in first-line treatment of advanced non-small cell lung cancer
Similar works from other Slovenian collections:
Advances in the therapy with immune-check point inhibitors (ICI) in non-small cell lung cancer (NSCLC) in 2022
Trans-esophageal endobronchial ultrasound-guided needle aspiration (EUS-B-NA)
ǂThe ǂrole of immune checkpoint inhibitors in the treatment of cancer of unknown origin
Febrile neutropenia and grade 3/4 neutropenia in daily practice of adjuvant chemotherapy for non-small-cell lung cancer
Neurological adverse events of immune checkpoint inhibitors
Back