izpis_h1_title_alt

Modeliranje vpliva lokacije pri ocenjevanju genetskih vrednosti
ID Lavrenčič, Eva (Author), ID Gorjanc, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,08 MB)
MD5: DBF8027CC832630120DE5CFE90282261

Abstract
Za ocenjevanje genetskih vrednosti uporabljamo statistične modele, ki omogočajo razlikovanje med genetskimi in okoljskimi vplivi na fenotip posameznika. Te metode so koristne v kmetijstvu za selekcijo ter v medicini za personalizacijo zdravljenja. Ločevanje genetskih in okoljskih vplivov je v primeru selekcije preko majhnih čred, ki so slabo genetsko povezane, težavno. Okoljski vpliv običajno opišemo kot pripadnost čredi. Dodatno lahko vključimo okoljske spremenljivke, ki opisujejo npr. podnebje, vendar teh informacij nimamo vedno na voljo. Alternativna možnost je modeliranje vpliva lokacije, kjer predpostavimo, da si črede, ki so geografsko blizu skupaj, delijo del okoljskega vpliva. Tako nam informacija o prostorski lokaciji lahko pomaga razlikovati med viri variabilnosti na fenotip. V nalogi se osredotočamo na različne pristope za modeliranje slučajnega vpliva lokacije na fenotipsko vrednost znotraj linearnih mešanih modelov in na doprinos tega modeliranja k izboljšanemu ocenjevanju slučajnih genetskih vrednosti živali. Analiziramo podatkovni set, ki vsebuje 30.314 opazovanj iz populacije rjavega goveda iz 2.012 čred v Sloveniji. Da bi analizirani podatki bolje odražali lastnosti majhnih rejskih programov, za katere so značilne manjše črede in slabša genetska povezanost med čredami, se osredotočimo na analizo podmnožice podatkov, ki vsebuje 3.800 opazovanj. Modeliramo standardiziran obseg prsi v odvisnosti od izbranih fiksnih in slučajnih vplivov, pri čemer spreminjamo, kateri slučajni vplivi so vključeni v proces modeliranja. Od slučajnih vplivov v osnovni model G vključimo genetski vpliv. V modelu GH vključimo genetski vpliv in vpliv črede, medtem ko v modelu GS vključimo genetski vpliv in vpliv lokacije, ki ga modeliramo na tri načine. V polnem modelu GHS vključimo vse tri slučajne vplive. Za modeliranje vpliva lokacije uporabimo regionalni model Besag, metodo SPDE in eksponentno kovariančno funkcijo. Modele ocenimo z metodo INLA iz paketa R-INLA, pri čemer model Besag in model z radialno bazno kovariančno funkcijo ocenimo tudi v družini programov BLUPF90. Ugotovljamo, da se podmnožici podatkov najbolje prilega model GHS, ki vključuje vse tri slučajne vplive. Osnovni model G, ki vključuje le genetski vpliv kot slučajni vpliv v modelu, ne loči dobro med okoljskimi in genetskimi vplivi na fenotipsko vrednost, saj prevelik del variabilnosti pripiše genetskemu vplivu. Vključitev slučajnega vpliva črede pojasni razlike med kmetijami, medtem ko vključitev geografske lokacije pojasni bolj splošen vpliv podnebja in drugih okoljskih dejavnikov. Opazimo, da smo za živali iz boljših lokacij (glede na ocenjeni slučajni vpliv lokacije) ocenili višje slučajne genetske vrednosti z modeloma G in GH kot z modelom GHS. Obratno smo opazili pri živalih iz slabših lokacij, kar kaže na precenjevanje slučajnih genetskih vrednosti živali iz boljših okolij in podcenjevanje slučajnih genetskih vrednosti živali iz slabših okolij. Prav tako opazimo povezanost med razlikami v napovedanih fenotipskih vrednostih z različnimi modeli na testni množici in ocenjenim slučajnim vplivom lokacije. Trije uporabljeni načini modeliranja slučajnega vpliva lokacije dajejo primerljive rezultate. Ocene slučajnih genetskih vrednosti in slučajnega vpliva lokacije, pridobljene z uporabo BLUPF90, se ujemajo z ocenami, pridobljenimi z metodo INLA. Skupnosti genetikov in selekcionistov priporočamo, da vključijo informacijo o prostorski lokaciji kmetij v proces modeliranja, saj bo to izboljšalo ločevanje genetskih in okoljskih vplivov na fenotip živali.

Language:Slovenian
Keywords:Besag, BLUPF90, genetska vrednost, hierarhični model, INLA, SPDE, vpliv lokacije
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-152673 This link opens in a new window
COBISS.SI-ID:181879811 This link opens in a new window
Publication date in RUL:04.12.2023
Views:1310
Downloads:136
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Spatial Modelling in the Estimation of Genetic Values
Abstract:
We utilise statistical models to differentiate between genetic and environmental influences on an individual's phenotype. These methods are useful in agriculture for selection purposes and in human medicine for the personalisation of treatment. The task of separating genetic and environmental effects on the phenotype becomes challenging when dealing with small herds that have low genetic connectedness. Typically, environmental effects are described using information about the herd to which the animal belongs. Moreover, we can include environmental variables such as climate, but such data is often not available. Alternatively, we can incorporate the location's effect, since we assume that geographically closer herds share some environmental influences. Therefore, information about the spatial location can help us distinguish between sources of variability on the phenotype. In this thesis, we focus on various approaches to model the effect of location on phenotype using linear mixed models. We evaluate the contribution of such modelling in improving the estimation of animals' genetic values. We analyse a dataset consisting of 30,314 observations from the population of brown cattle in Slovenia. To better reflect the characteristics of small-scale breeding programs, which are characterized by smaller herds and poor genetic connectivity between herds, we focus on analysing a subset of the data containing 3,800 observations. We model a standardised physical trait, chest girth, using selected fixed and random effects. We include up to three effects as random effects, with the genetic effect being present in all models. The baseline model G comprises only the genetic effect. In the GH model, we include genetic and herd effects, while in the GS model, we include genetic and location effects, with location effect being modelled in three ways. We incorporate all three random effects in the full GHS model. The location effect is modelled using three different methods: the Besag regional model, the SPDE method, and the exponential covariance function. We estimate the models using the INLA method from the R-INLA package. The Besag model and the model with an radial basis covariance function are also estimated in the BLUPF90 family of programs. We have found that the full GHS model provides the best fit for the analysed subset of data based on DIC statistics. The baseline model G, which only considers the genetic effect as a random effect, fails to adequately distinguish between environmental and genetic influences on the phenotypic value, as it attributes too much of the variability to the genetic effect. The inclusion of the random herd effect allows us to account for differences at the farm level, while the inclusion of the geographical location helps us explain the more general influence of climate and other environmental factors. We observe a positive trend in the difference between estimated random genetic values from models G and GHS, as well as from models GH and GHS, against the estimated random spatial effect. This suggests an overestimation of genetic values for animals from better environments or an underestimation of genetic values for animals from poorer environments. Additionally, we note a trend in the difference in predicted phenotypic values between models, against the estimated random spatial effect in the test sample. The three methods used for modelling the location effect give comparable results. The estimates of genetic values and location random effects obtained from the BLUPF90 programme are comparable to those obtained using the INLA method. We suggest to the community of geneticists and breeders to include spatial location of the farm in the modelling process in order to improve the separation of genetic and environmental effects.

Keywords:Besag, BLUPF90, genetic value, hierarchical model, INLA, SPDE, spatial effect

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back