izpis_h1_title_alt

The Waring problem for matrix algebras, II
ID Brešar, Matej (Author), ID Šemrl, Peter (Author)

.pdfPDF - Presentation file, Download (161,62 KB)
MD5: 9BCA38626EF71AD0F09A9FDE428D3580
URLURL - Source URL, Visit https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12825 This link opens in a new window

Abstract
Let $f$ be a noncommutative polynomial of degree $m\ge 1$ over an algebraically closed field $F$ of characteristic $0$. If $n\ge m-1$ and $\alpha_1,\alpha_2,\alpha_3$ are nonzero elements from $F$ such that $\alpha_1+\alpha_2+\alpha_3=0$, then every trace zero $n\times n$ matrix over $F$ can be written as $\alpha_1 A_1+\alpha_2A_2+\alpha_3A_3$ for some $A_i$ in the image of $f$ in $M_n(F)$.

Language:English
Keywords:Waring problem, noncommutatative polynomials, matrix algebras
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:Str. 1880-1889
Numbering:Vol. 55, iss. 4
PID:20.500.12556/RUL-151894 This link opens in a new window
UDC:512
ISSN on article:0024-6093
DOI:10.1112/blms.12825 This link opens in a new window
COBISS.SI-ID:161733891 This link opens in a new window
Publication date in RUL:25.10.2023
Views:874
Downloads:56
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Bulletin of the London Mathematical Society
Shortened title:Bull. Lond. Math. Soc.
Publisher:Wiley, London Mathematical Society
ISSN:0024-6093
COBISS.SI-ID:25154560 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:Waringov problem, nekomutativni polinomi, matrične algebre

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0288
Name:Algebra in njena uporaba

Funder:ARRS - Slovenian Research Agency
Project number:J1-2454
Name:Izomorfizmi, izometrije in ohranjevalci

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back