izpis_h1_title_alt

Šibko nadzorovano programsko označevanje učnih primerov z orodjem Snorkel
ID Bračko, Bjorn (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,41 MB)
MD5: B22DD19F4CDD41A729667AC3A5DF559C

Abstract
V zadnjih letih se je z eksplozijo količine podatkov in kompleksnostjo napovednih problemov povečala potreba po velikih količinah ročno označenih podatkov, kar predstavlja izziv v postopku nadzorovanega strojnega učenja. Zaradi tega se šibki nadzor, ki uporablja šumno ali nenatančno označeno učno množico, izkaže kot privlačna alternativa. Predstavimo širše področje šibkega nadzora, posvetimo pa se ogrodju Snorkel. Zgradimo več napovednih modelov kot šibke označevalce, katere nato uporabimo kot označevalne funkcije za generativni označevalni model Snorkel. Primerjamo točnost končnih modelov naučenih s pravimi oznakami in verjetnostnimi oznakami ogrodja Snorkel. Pokažemo, da imajo končni modeli naučeni z oznakami ogrodja Snorkel, primerljivo ali celo boljšo uspešnost kot modeli naučeni s pravimi oznakami.

Language:Slovenian
Keywords:strojno učenje, šibko nadzorovano učenje, avtomatsko (šibko) označevanje podatkov, ogrodje Snorkel
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-151801 This link opens in a new window
COBISS.SI-ID:171797251 This link opens in a new window
Publication date in RUL:20.10.2023
Views:557
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Weakly supervised programmatic labelling of training data with the Snorkel toolkit
Abstract:
In recent years, the explosion of available data and the complexity of prediction problems has increased the need for large amounts of manually labelled data, posing a challenge to the supervised machine learning process. For this reason, weak supervision using noisy or inaccurately labelled training sets proves to be an attractive alternative. We present the broader area of weak supervision focusing on the Snorkel framework. We construct several predictive models as weak classifiers, which we then use as labelling functions for the Snorkel generative labeling model. We compare the accuracy of the final models learned with the true labels and the Snorkel probabilistic labels. We show that the final models trained with Snorkel labels have comparable or even better performance than the models trained with the true labels.

Keywords:machine learning, weak supervision, automatic (weak) data labeling, Snorkel toolkit

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back