izpis_h1_title_alt

Tomografsko slikanje podpovršinskih absorbirajočih struktur v fizičnih modelih kože na osnovi sunkovne fototermalne radiometrije
ID Arh, Katja (Author), ID Majaron, Boris (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,91 MB)
MD5: 3E3CBE91E079E36FA49C951EB97C6341

Abstract
V magistrski nalogi analiziramo tomografsko slikanje podpovršinskih absorbirajočih struktur v fizičnih modelih kože na osnovi sunkovne fototermalne radiometrije (SFTR). Ta eksperimentalna tehnika temelji na osvetlitvi vzorca s kratkim laserskim sunkom in merjenju infrardečega (IR) sevanja vzorca. Iz prostorsko razločenih meritev prehodno povečanega sevanja vzorca s hitro infrardečo kamero lahko z reševanjem inverznega problema toplotne difuzije in sevanja rekonstruiramo tridimenzionalno temperaturno polje, ki se vzpostavi ob osvetlitvi. Tako imenovana fototermalna tomografija (PTT) omogoča slikanje podpovršinskih absorbirajočih struktur v močno sipajočih vzorcih. Tehniko preizkušamo na fizičnih modelih človeške kože, izdelanih iz agarskega gela z dodatkom optičnih sipalcev in valjastih absorberjev s premerom ⠼ 100 μm, ki posnemajo kapilare v površinskih plasteh kože. V nalogi predstavimo eksperimentalno metodo in protokol za predobdelavo meritev, s katerim zmanjšamo napake zaradi majhnih variacij temperature in emisivnosti vzorca. Z rezanjem prvih 20 ms radiometričnega posnetka odstranimo artefakte, ki izvirajo iz napake pri meritvi radiometrične temperature vzorca z nehomogenim globinskim temperaturnim profilom. Pokažemo, da progresivno združevanje emisijskih slik omogoča desetkratno zmanjšanje računskega časa brez izgube kvalitete tomografske slike. Z majhnim povečanjem konstante toplotne difuzije v modelu zmanjšamo deformacije rekonstruiranih temperaturnih porazdelitev, ki so posledica neostrih radiometričnih slik. Z odštevanjem signala iz referenčnega okna odstranimo korelirani del šuma IR kamere in prispevek k signalom zaradi majhnega homogenega temperaturnega dviga vzorca. Opisani postopek omogoča robustno lokalizacijo podpovršinskih absorbirajočih struktur na globinah do 1 mm brez motečih artefaktov tudi v primerih, ko je razmerje signal-šum blizu 1. Za zbližanje hitrosti konvergence struktur na različnih globinah uporabimo progresivno diskretizacijo prostora rešitve v aksialni smeri.

Language:Slovenian
Keywords:sunkovna fototermalna radiometrija, fototermalna tomografija, infrardeča termografija, fizični model človeške kože, rekonstrukcija slike
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-151233 This link opens in a new window
COBISS.SI-ID:167233027 This link opens in a new window
Publication date in RUL:01.10.2023
Views:451
Downloads:108
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Tomographic imaging of subsurface absorbing structures in tissue phantomsbased on pulsed photothermal radiometry
Abstract:
In this thesis, we analyse tomographic imaging of subsurface absorbing structures in tissue phantoms based on pulsed photothermal radiometry (PPTR). This experimental technique consists of illuminating the sample with a laser pulse and measuring its infrared (IR) radiation. From spatially resolved measurements of the transient radiation with a fast IR camera, the initial three-dimensional temperature field in the sample can be reconstructed by solving the inverse problem of thermal diffusion and radiation. The so-called photothermal tomography (PTT) enables tomographic imaging of subsurface absorbing structures in strongly scattering samples. We test the technique on agarose gel tissue phantoms with optical scatterers and subsurface cylindrical absorbers ⠼ 100 μm in diameter, which mimic blood vessels in the superficial layers of the skin. We present the experimental method and a novel protocol for pre-processing the measurements which reduces errors due to minor variations in temperature and emissivity of the sample. By removing the first 20 ms of the radiometric record, we remove artefacts originating from the error in the radiometric temperature measurement of a sample with an inhomogeneous depth temperature profile. We show that progressive quadratic binning of radiometric images enables a tenfold reduction in computational time without adverse effects on image quality. A small increase of thermal diffusivity in the model reduces temperature field deformations due to blurred radiometric images. By subtracting the signal from the reference window, we remove the correlated part of the IR camera noise and the contribution to the signals due to the small homogeneous temperature rise of the sample. This procedure allows robust localisation of subsurface absorbing structures at depths up to 1 mm without disturbing artefacts, even in cases where the signal-to-noise ratio is close to 1. We apply a progressive discretization of the temperature field in the axial direction to approximate the speed of convergence of structures at different depths.

Keywords:pulsed photothermal radiometry, photothermal tomography, infrared thermometry, tissue phantom, image reconstruction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back