Research on alternative means of energy production has been on the rise. One of the key elements of clean energy is hydrogen. Clean hydrogen production is technologically speaking a very challenging process. Along with the hydrogen evolution reaction comes the oxygen evolution reaction that is often the limiting factor and it is therefore crucial when optimizing the performance of electrochemical water splitting. The master thesis looks into the production of thin film catalyzers, that could be used in the process of photoelectrochemical water splitting, specifically oxygen evolution reaction. The main technique used in the master thesis to produce such films was pulsed laser deposition. Two different systems were chosen to analyze composition, structure, morphology, and functional properties. Titanium dioxide was used in both systems as the upper active layer. Both systems also used lanthanum nickelate as a conductive middle layer. The first system used lanthanum aluminate as its substrate, whereas the second used platinized silicon. Deposition parameters of TiO2 deposition were optimized based on XRD, AFM, and SEM analysis for each of the systems. In the first system where lanthanum aluminate was used as the substrate, it was possible to observe epitaxial growth of titanium dioxide thin films in the form of anatase. In the second system where platinized silicon was used as the substrate, it was possible to observe a lot less ordered polycrystalline and textured structure of titanium dioxide thin films. Two such different systems were used to get some insight into the dependence of activity towards oxygen evolution reaction on the structure of titanium dioxide thin films. The best structure of titanium dioxide thin films was observed on the samples prepared on lanthanum aluminate substrate, which gave us epitaxial growth of titanium dioxide. The exact opposite was observed when performing the functional analysis of the thin films. It turned out that the activity towards oxygen evolution reaction is a lot better in the samples prepared on platinized silicon.
|