izpis_h1_title_alt

Zaznavanje anomalij v hoji na pametni zapestnici
ID Hrastič, Aleksander (Author), ID Meža, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,35 MB)
MD5: 52779752E37730399D1D0552708A6250

Abstract
Padci so drugi najpogostejši vzrok smrti zaradi nenamernih poškodb, zlasti pri odraslih, starih 60 let in več. Finančni stroški in dejavniki, ki prispevajo k padcem, so visoki. Obstajajo številni preventivni ukrepi, vendar so potrebne bolj prilagojene rešitve. Ta magistrska naloga se osredotoča na razvoj personaliziranega algoritma, ki služi kot dokaz koncepta za razvrščanje posameznikovega vzorca hoje z uporabo merilnika pospeška na pametni zapestnici. Sistem lahko razloči odstopajočo hojo od referenčne hoje. Magistrska naloga vključuje pridobitev nabora podatkov s podatki o signalih iz merilnika pospeška, ki simulirajo hojo starejših posameznikov, razvoj algoritma za delno nadzorovano učenje in implementacijo ter evalvacijo algoritma v vgrajenem sistemu. Ugotovljeno je bilo, da je uporaba metrike Mahalanobisove razdalje najprimernejša metoda za ločevanje odstopajoče in neodstopajoče hoje. Analiza je pokazala, da je algoritem deloval pri 82,35 % vseh oseb v zabeleženi zbirki podatkov. Pri praktičnem preizkusu izvedenega algoritma v vgrajenem sistemu je algoritem deloval z točnostjo 87,5 %, specifičnostjo 75 % in občutljivostjo 100 %. Robustnost algoritma je vprašljiva, zlasti pri velikih spremembah hitrosti hoje ali spremembah gibanja rok. Magistrska naloga je pokazala, da je mogoče razlikovati odstopajočo hojo od neodstopajoče. Vendar so ostali izzivi pri pridobivanju domenskih značilk iz zapestnega merilnika pospeška zaradi šuma, ki ga povzroča gibanje roke. V nadaljnjih raziskavah bi bilo potrebno raziskati metode za izračun domenskih značilk iz senzorja, nameščenega na zapestju in razviti zanesljivejši algoritem za zaznavanje korakov. To tehnologijo bi lahko razširili v sistem, ki bi pri starejših uporabnikih razlikoval med običajno in neobičajno hojo ter v primeru znatnega poslabšanja kakovosti hoje opozoril zdravstveno osebje na povečano tveganje padca.

Language:Slovenian
Keywords:padci, strojno učenje, metrike razdalj, vgrajeni sistem, merilnik pospeška, meritve hoje, pametna zapestnica, delno nadzorovano strojno učenje
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-150908 This link opens in a new window
COBISS.SI-ID:168067075 This link opens in a new window
Publication date in RUL:25.09.2023
Views:919
Downloads:115
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detecting walking anomalies on smart wristband
Abstract:
Falls are the second leading cause of death from unintentional injuries, especially in adults aged 60 and over. The financial costs and contributory factors of falls are high. Many preventive measures exist, but more tailored solutions are needed. This MSc thesis focuses on the development of a personalized algorithm that serves as a proof-of-concept to classify an individual's walking pattern using an accelerometer on a smart bracelet. The system can distinguish deviant walking from reference walking. The MSc thesis includes the acquisition of a dataset with accelerometer signal data simulating the gait of elderly individuals, the development of a semi-supervised learning algorithm and the implementation of the algorithm in an embedded system. The use of the Mahalanobis distance metric was found to be the most appropriate method for separating deviant from non-deviant walking. The analysis showed that the algorithm could work for 82.35% of all persons in the recorded dataset. In a practical test of the implemented algorithm in an embedded system, the algorithm performed with an accuracy of 87.5%, specificity of 75% and sensitivity of 100%. The robustness of the algorithm is questionable, especially with large changes in walking speed or changes in hand movements. The MSc thesis has shown that it is possible to distinguish deviant walking from non-deviant walking. However, challenges remained in extracting domain features from the wrist-mounted accelerometer due to noise caused by hand movement. Further research should investigate methods to compute domain features from the wrist-mounted sensor and develop a more reliable algorithm for step detection. This technology could be extended into a system that would distinguish abnormal walking from normal walking in elderly users and, in the event of a significant deterioration in walking quality, warn healthcare professionals of an increased risk of falling.

Keywords:falls, machine learning, distance metrics, embedded system, accelerometer, gait measurements, smart bracelet, semi supervised machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back