izpis_h1_title_alt

Razvrščanje komitentov banke v skupine : magistrsko delo
ID Deželak, Eva (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Kodre, Jurij (Comentor)

.pdfPDF - Presentation file, Download (1,52 MB)
MD5: 7E6BBED1D538A86BE092E341EAD1F5DF

Abstract
Razvrščanje komitentov banke v skupine postaja čedalje bolj priljubljena tema, saj morajo banke do komitentov pristopati bolj individualno, če želijo ostati konkurenčne. Z razvrstitvijo komitentov v skupine lahko do vsake skupine komitentov razvijejo drugačen pristop in s tem povečajo tako zadovoljnost komitentov kot tudi lastni dobiček. Magistrsko delo ponuja pristop k iskanju optimalne metode za razvrščanje komitentov NLB banke na podlagi dveh algoritmov strojnega učenja: metode k-tih voditeljev in metode k-tih medoidov. Ključni del predstavlja izbira in identifikacija modela ter njegovih parametrov. Razvrščanje komitentov v skupine izvedemo večkrat, za različne nabore vhodnih spremenljivk in različne nastavitve parametrov algoritma, ter iščemo tisti model, pri katerem je razvrščanje najbolj uspešno. Dobljeno razvrščanje ocenimo z metodami za vrednotenje kakovosti razvrščanja v skupine, kjer uporabimo indeks obrisov in Dunnov indeks. Na podlagi vrednosti obeh indeksov izberemo optimalno kombinacijo algoritma in parametrov za razvrščanje. Na koncu pojasnimo izbrano optimalno razvrščanje v skupine s pomočjo porazdelitve najpomembnejših spremenljivk, katere pridobimo na podlagi algoritma naključnih gozdov.

Language:Slovenian
Keywords:strojno učenje, razvrščanje v skupine, metoda k-tih voditeljev, metoda k-tih medoidov, indeks obrisov, Dunnov indeks, naključni gozd
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150847 This link opens in a new window
COBISS.SI-ID:166718723 This link opens in a new window
Publication date in RUL:24.09.2023
Views:685
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Clustering bank clients
Abstract:
Clustering bank clients into groups is becoming increasingly popular, as banks must approach clients more individually to remain competitive. By clustering clients into groups, they can develop a different approach to each group of clients, increasing both client satisfaction and their own profit. The master's thesis offers an approach to finding the optimal method for clustering NLB bank's customers based on two machine learning algorithms: the k-means algorithm and the k-medoids algorithm. The critical part is selecting and identifying the model and its parameters. The clustering of the bank's clients is carried out several times, for different sets of input variables and different settings of the algorithm parameters, and we look for the model in which the clustering is the most successful. The clustering obtained is evaluated using methods for assessing the quality of clustering into groups, where the Silhouette and Dunn indexes are used. Based on the values of both indices, we choose the optimal combination of algorithm and parameters for clustering. Finally, we explain the optimal clustering with the help of the distribution of the most important variables, which we obtain based on the random forest algorithm.

Keywords:machine learning, clustering, k-means algorithm, k-medoids algorithm, Silhouette index, Dunn index, random forest

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back