izpis_h1_title_alt

Simpsonov paradoks : delo diplomskega seminarja
ID Lesnjak, Neža (Author), ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (540,24 KB)
MD5: FD979731BFDCFA220B1126BEEB6520E7

Abstract
Pojav, ko se neka povezava med dvema spremenljivkama pojavi, kadar preučujemo celotno populacijo hkrati in izgine ali se pojavi v obratni povezavi, kadar jo delimo na podskupine, imenujemo Simpsonov paradoks. S pomočjo mere povezanosti ga lahko zapišemo v treh oblikah: kot asociacijski preobrat, Yulov asociacijski preobrat ali kot paradoks združenja. Pojav paradoksa lahko srečamo na raznolikih področjih, za lažjo predstavo pa si lahko pomagamo z grafi, vektorji, mozaičnimi prikazi, pa tudi usmerjenimi acikličnimi grafi. Obstajajo tudi raznolika orodja za pomoč pri prepoznavanju pojava Simpsonovega paradoksa na podatkih. Simpsonov paradoks lahko povežemo z vzročnim sklepanjem, ki nam je v pomoč tudi pri razlagi, zakaj pride do pojava paradoksa in kako se odločati pri obravnavi podatkov - ali upoštevati delitev na podskupine ali ne. Prav tako ga lahko povežemo z načelom gotovosti, za katerega Simpsonov paradoks predstavlja protiprimer veljavnosti načela.

Language:Slovenian
Keywords:Simpsonov paradoks, asociacijski preobrat, podskupine
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150833 This link opens in a new window
UDC:519.2
COBISS.SI-ID:165848323 This link opens in a new window
Publication date in RUL:24.09.2023
Views:887
Downloads:46
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Simpson's paradox
Abstract:
The phenomenon in which a certain association between two variables occurs when studying the entire population and then disappears or appears in the opposite direction when the population is divided in subpopulations, is known as Simpson's paradox. Using a measure of strength of the probabilistic association we can formulate Simpson's paradox in three forms: association reversal, Yule's association reversal or amalgamation paradox. We can encounter the phenomenon of the paradox in various fields and for better visual display we can use plots, vectors, mosaic plots and also directed acyclic graphs. There are also some tools that help with identifying the occurrence of Simpson's paradox in data. Simpson's paradox can be connected to causal reasoning, which also helps with explaining why the paradox occurs and how to decide when dealing with data - whether to consider subpopulation division or not. It can also be linked to the sure-thing principle, for which Simpson's paradox serves as a counterexample to the principle's validity.

Keywords:Simpson's paradox, association reversal, subpopulations

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back