izpis_h1_title_alt

Lagrangeova interpolacija z Richardsonovo iteracijo : delo diplomskega seminarja
ID Abraham, Maja (Author), ID Jaklič, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,37 MB)
MD5: 788BF36A745B29826E0D1CEE6282FF46
.zipZIP - Appendix, Download (6,93 KB)
MD5: E5667F8CE5A20B64F86C25AFAE527ED0

Abstract
Večrazsežna polinomska interpolacija je metoda, s katero iščemo polinomsko ploskev, ki poteka skozi dane podatkovne točke. Je ena izmed osnovnih metod v teoriji aproksimacije in numerični analizi. Interpolacija točk omogoča predstavitev različnih 3D oblik v matematični obliki, ki je razumljiva računalniku. Zaradi enostavnosti in lepih lastnosti polinomske ploskve pogosto iščemo med ploskvami iz tenzorskega produkta. Interpolacijski problem se prevede na reševanje sistema linearnih enačb, ki ga lahko rešimo z različnimi metodami. V tem delu se osredotočimo na reševanje sistema linearnih enačb, dobljenega pri dvorazsežni polinomski interpolaciji s ploskvami iz tenzorskega produkta. Za reševanje sistema uporabimo Richardsonovo iteracijsko metodo, ki je iterativna metoda za numerično reševanje sistemov linearnih enačb. Obravnavamo tri načine implementacije omenjene metode in primerjamo njihove računske zahtevnosti glede na lastnosti izbrane ploskve iz tenzorskega produkta. Ob koncu prikažemo izvedbo interpolacije točk na izbrani funkciji z Bézierovo ploskvijo iz tenzorskega produkta. Sistem linearnih enačb rešimo na tri obravnavane načine in primerjamo rezultate.

Language:Slovenian
Keywords:interpolacija, ploskve iz tenzorskega produkta, Richardsonova iteracija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150825 This link opens in a new window
UDC:519.6
COBISS.SI-ID:165593347 This link opens in a new window
Publication date in RUL:24.09.2023
Views:938
Downloads:69
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Lagrange interpolation with Richardson iteration
Abstract:
Multivariate polynomial interpolation is a method that searches for a polynomial surface that passes through given data points. It is one of the fundamental methods in approximation theory and numerical analysis. Trough interpolation of data points, various 3D shapes can be represented in mathematical form that can be understood by a computer. Because of its simplicity and fine properties, polynomial surfaces are frequently selected from a tensor product surfaces. The interpolation problem is translated into solving a system of linear equations which can be done using various methods. The present study focuses on the solving of linear systems that derives from a bilinear interpolation with tensor product surfaces. This is done by means of Richardson iteration, a numerical iterative method used for solving linear systems. The study discusses three approaches of implementing the method and compares their computational cost based on the properties of the chosen tensor product surface. The paper showcases the process of interpolation of data points on a given function using a Bézier tensor product surface. The system of linear functions is solved taking the three aforementioned approaches and the results are compared.

Keywords:interpolation, tensor product surfaces, Richardson iteration

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back