izpis_h1_title_alt

Verjetnostni singularni razcep : magistrsko delo
ID Bajc, Tjaša (Author), ID Plestenjak, Bor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,03 MB)
MD5: DDB85BB956410C2EFEF6018207A5EE3A

Abstract
Delo obravnava aproksimacijo matrik s pomočjo verjetnostnega singularnega razcepa matrike, pri katerem namesto celotne vhodne matrike obravnavamo slučajni vzorec iz slike te matrike. Predstavljene so zgornje meje pričakovane vrednosti napake aproksimacije, ki so izpeljane na dva različna načina. Navedene so tudi verjetnostne ocene za velikost napake. Delovanje algoritmov je predstavljeno z numeričnimi primeri.

Language:Slovenian
Keywords:singularni razcep, standardno normalna matrika, aproksimacija, verjetnostni algoritem
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150813 This link opens in a new window
COBISS.SI-ID:164472323 This link opens in a new window
Publication date in RUL:24.09.2023
Views:454
Downloads:75
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Randomized Singular Value Decomposition
Abstract:
In the thesis matrix approximation by randomized singular value decomposition is studied. In randomized singular value decomposition, a random sample of the image of a given matrix is used instead of the entire matrix. Upper bounds on the expected value of matrix approximation error are established by using two different methods. Probabilistic approximation error bound is established. Numerical examples are used to demonstrate the performance of algorithms.

Keywords:singular value decomposition, Gaussian matrix, approximation, randomized algorithm

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back