izpis_h1_title_alt

Steinova lema : delo diplomskega seminarja
ID Rupnik, Urban (Author), ID Raič, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (415,39 KB)
MD5: 4FFD370CED5E091A2D420DD8B8CDDC2D

Abstract
Steinova lema je čudovit in hkrati preprost rezultat teorije verjetnosti in statistike, v osnovi razvit na normalni porazdelitvi za eno- in večdimenzionalne slučajne vektorje, na podlagi katerih neposredno povezuje enakost v enačbi z normalnostjo njihove porazdelitve. Obenem predstavlja tudi uporabno orodje za določanje sestave portfelja v poslovnih financah in osnovni gradnik Steinove metode za ocenjevanje napake pri aproksimaciji porazdelitev slučajnih vektorjev. Osrednja naloga tega dela je predstaviti Steinovo lemo za poljuben normalni slučajni vektor, interpretirati njen pomen in spoznati nekaj njenih alternativnih praktičnih zapisov. V nadaljevanju pa, s ciljem dokazati centralni limitni izrek na vsoti neodvisnih enako porazdeljenih slučajnih spremenljivk, sledi še predstavitev Steinove metode.

Language:Slovenian
Keywords:Stein, Steinova lema, Steinova metoda, Normalna porazdelitev
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150802 This link opens in a new window
UDC:519.2
COBISS.SI-ID:165546243 This link opens in a new window
Publication date in RUL:23.09.2023
Views:612
Downloads:37
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stein's lemma
Abstract:
Stein's lemma is a beautiful and, at the same time, straightforward result in probability theory and statistics. Primarily developed based on the normal distribution for one- and multidimensional random vectors, directly connecting the equality in the equation with the normality of their distributions. Additionally, it serves as a useful tool for determining portfolio composition in business finance and is a fundamental building block of Stein's method for estimating the error in approximating distributions of random vectors. The central task of this work is to present Stein's lemma for any normal random vector, interpret its significance, and explore some of its alternative practical formulations. Furthermore, with the aim of proving the central limit theorem for the sum of independent identically distributed random variables, a presentation of Stein's method follows.

Keywords:Stein, Stein's lemma, Stein's method, Normal distribution

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back