izpis_h1_title_alt

Faktorizacija s pomočjo stožnic : delo diplomskega seminarja
ID Mrhar, Nik (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (373,89 KB)
MD5: 5DD4B303B8CB13DD6F56012A01CFB7D6

Abstract
Diplomska naloga preučuje faktorizacijo lihih celih števil, ki jih lahko na dva različna načina zapišemo v obliki $mx^2 \pm ny^2$. V posebnem primeru, ko je $m = n = 1$, sta se s tem problemom ukvarjala že Pierre de Fermat ter Leonhard Euler, katerih rešitve tudi predstavimo. V nadaljevanju te primere posplošimo ter si ogledamo še splošno rešitev Lucasa in Mathewsa. Ker se izkaže, da se negativni primer $mx^2 - ny^2$ precej razlikuje od pozitivnega primera $mx^2 + ny^2$, si ogledamo Pellovo enačbo $x^2 - mny^2 = 1$, ki nam porodi Pellovo povezane rešitve problema. Te pa za razliko od pozitivnega primera dajo trivialen razcep.

Language:Slovenian
Keywords:faktorizacija, stožnice, Eulerjev razcep, Lucas-Mathewsova formula, Pellova enačba
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150550 This link opens in a new window
UDC:511
COBISS.SI-ID:165455107 This link opens in a new window
Publication date in RUL:20.09.2023
Views:1146
Downloads:64
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using Conic Sections to Factor Integers
Abstract:
This thesis explores the factorization of odd integers that can be expressed in two different ways as $mx^2 \pm ny^2$. A special case, when $m = n = 1$, was the subject of study by Pierre de Fermat and Leonhard Euler, whose solutions we also present. We continue with a generalization of the problem and present another solution by Lucas and Mathews. As the negative case $mx^2 - ny^2$ turns out to be quite different from the positive case $mx^2 + ny^2$, we take a look at Pell’s equation $x^2 - mny^2 = 1$. We see that Pell-related solutions of the problem produce trivial factorizations.

Keywords:factorization, conic sections, Euler factorization, Lucas-Mathews formula, Pell’s equation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back