izpis_h1_title_alt

Difeomorfizmi ploskev : delo diplomskega seminarja
ID Petrovčič, Job (Author), ID Strle, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,75 MB)
MD5: 918B847730C49EF8CB27809BD8CE761D

Abstract
V uvodu je predstavljen pojem homotopije in izotopije. Delo obravnava zanke, fundamentalno grupo, geometrijsko število presečišč in dvokotniški kriterij. Definirana je grupa razredov preslikav. Ta grupa je določena za disk, enkrat preboden disk, kolobar, torus in enkrat preboden torus. Predstavljena je Alexandrova metoda in družina zank za Alexandrovo metodo za ploskve roda vsaj dva. V nadaljevanju so predstavljeni Dehnovi zasuki, temu sledi predstavitev njihovega delovanja na zanke. S pomočjo topoloških svežnjev je dokazano, da je Birmanovo zaporedje eksaktno. Del razprave je namenjen lastnostim Dehnovih zasukov. Na koncu je kot ključen prispevek dokazan Dehnov izrek, da je grupa razredov preslikav končno generirana z Dehnovimi zasuki.

Language:Slovenian
Keywords:geometrijska topologija, ploskev, homeomorfizem\sep difeomorfizem, homotopija, izotopija, grupa razredov preslikav, minimalna pozicija zank, fundamentalna grupa, Dehnov zasuk, Alexandrova metoda, končno generirana grupa, Birmanovo eksaktno zaporedje
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150549 This link opens in a new window
UDC:515.1
COBISS.SI-ID:165445379 This link opens in a new window
Publication date in RUL:20.09.2023
Views:480
Downloads:117
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Surface Diffeomorphisms
Abstract:
First, terms homotopy and isotopy are discussed. Loops, fundamental group, geometric intersection number and bigon criterion are presented. Mapping class group is defined. This group is classified for disc, once-punctured disc, annulus, torus and once-punctured torus. Alexander method is presented and a family of loops for Alexander method is given for surfaces of genus at least two. Dehn twists are defined along with a presentation of their action on curves. Using fibre bundles the Birman sequence is shown to be exact. Basic properties of Dehn twists are proved. Finally, a proof of a theorem of Dehn that the mapping class group of a surface is finitely generated by Dehn twists is presented.

Keywords:geometric topology, surface, homeomorphism, diffeomorphism, homotopy, isotopy, mapping class group, minimal position of loops, fundamental group, Dehn twist, Alexander method, finitely generated group, Birman exact sequence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back