izpis_h1_title_alt

Varnostno število grafov Sierpińskega
ID Čelan, Nika (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (587,29 KB)
MD5: 42F325F39B87C2CB45D629DDFED61E9C

Abstract
V nalogi je najprej predstavljena terminologija in teoretične osnove potrebne za razumevanje pojmov varnosti, dominacije in varnostne dominacije v grafih. V drugem delu diplomskega dela, bomo definirali grafe Sierpińskega. Povedali bomo, kako so nastali in kakšne so njihove lastnosti. Za lažje razumevanje bomo tudi narisali nekaj manjših primerov grafov Sierpińskega. Glavna tema naloge so rezultati iz članka Security in Sierpiński graphs. Razložili bomo dokaz izreka za varnostno število grafov Sierpińskega in dokazali potrebne leme. V nalogi bomo iskali tudi varnostno dominacijsko število grafov Sierpińskega. Ta problem bomo razdelili na dva dela in sicer za grafe S_p^n s sodim p in za grafe S_p^n z lihim p. Za sode bomo poiskali točno formulo za varnostno dominacijsko število, za lihe pa bomo podali le zgornjo mejo, saj je iskanje točne formule še odprt problem.

Language:Slovenian
Keywords:varnost v grafih, varnostno število, varnostno dominacijsko število, graf Sierpińskega
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150462 This link opens in a new window
COBISS.SI-ID:169223427 This link opens in a new window
Publication date in RUL:18.09.2023
Views:991
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Security number of Sierpiński graphs
Abstract:
The thesis first introduces the terminology and the theoretical basics necessary to understand the concepts of security, domination, and secure domination in graphs. In the second part of the thesis, graphs of Sierpiński will be defined. It will be explained how they were created and what their characteristics are. To make it more understandable, some small examples of Sierpiński graphs will also be drawn. The proof of the theorem for the security number of Sierpiński graphs will be explained and the necessary lemmas will be proved. We will also look for the secure domination number of Sierpiński graphs. This problem will be divided into two parts, namely for the graphs S_p^n with even p and for graphs S_p^n with odd p. For even p we will find the exact formula for the secure domination number, for odd p we will only give the upper bound since finding the exact formula is still an open problem.

Keywords:security in graphs, security number, secure domination number, Sierpiński graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back