izpis_h1_title_alt

Uporaba večmodalnih podatkov za zaznavanja terasiranih pokrajin z globokimi modeli
ID KORAČIN, MATIC (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Ciglič, Rok (Comentor)

.pdfPDF - Presentation file, Download (4,66 MB)
MD5: 4CCDC3DA4CC04112810817F143C959A1

Abstract
Terasirane pokrajine so svetovno prepoznane kot pomemben del naravne in kulturne dediščine. V Sloveniji se je obdelovanje velikega dela teras opustilo, zato gotov zgodovinski obseg terasiranih pokrajin na ozemlju Slovencev ni natanko znan. Metode za detekcijo teras že obstajajo in temeljijo na semantični segmentaciji javno dostopnih višinskih podatkov, pridobljenih s tehnologijo LIDAR. V raziskavi smo preverjali vplive več vhodnih modalnosti kot je ortofoto, dejanska raba površja in meje med parcelami. Podatke smo obdelovali z variacijo arhitekture globokega učenja U-Net ter za združevanje podatkov primerjali tehniki zgodnje in srednje fuzije podatkov. Naučen napovedni model se je naučil locirati terasirane pokrajine bolje kot model iz referenčne raziskave. Naši rezultati kažejo, da uporaba večmodalnosti ne doprinese bistvenih dodatnih informacij pri zaznavanju terasiranih pokrajin.

Language:Slovenian
Keywords:terase, strojno učenje, segmentacija, večmodalnost, digitalni model višin, ortofoto
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-150186 This link opens in a new window
COBISS.SI-ID:168521475 This link opens in a new window
Publication date in RUL:14.09.2023
Views:444
Downloads:55
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using multimodal data for terraced land recognition with deep models
Abstract:
Terraced landscapes are globally recognized as part of natural and cultural heritage. The maintenance of a large part of terraces in Slovenia has been given up, so the historical scope of terraced landscapes in Slovenia is not exactly known. Methods for landscaped areas detection have already been implemented and are based on semantic segmentation of elevation data extracted with LIDAR technology. In this research we examined the effect of using other modalities as input such as orthofoto, land usage data and borders between real estates. We processed the data with a variation of the U-Net architecure and compared early and middle data fusion techniques. The finished model has shown to be more effective at detecting terraced landscapes than the model in the reference research. Our results show that using extra modalities does not contribute significantly to the detection of terraced landscapes.

Keywords:terraces, machine learning, segmentation, multimodality, digital elevation model, orthophoto

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back