izpis_h1_title_alt

Združevanje slik na podlagi nenatančnih mask
ID Črne, Ema (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (25,28 MB)
MD5: CA92A236B6A8BFAB793532EE119E8BB1

Abstract
Pri združevanju slik se večina pristopov osredotoča na izboljšanje mask, ki ločujejo ospredje od ozadja. Kot alternativo zahtevni in počasni metodi finega izboljševanja mask smo si v nalogi zastavili cilj doseči podobne rezultate samo z uporabo približnih mask in globokega učenja. Približne maske za učenje modela smo izpeljali iz podanih natančnih mask, ki smo jih sami deformirali. V okviru naloge smo preučili vplive različnih parametrov in za končni model izbrali tiste, ki so se izkazali za najuspešnejše. Končni model smo nato preizkusili tudi z raznovrstnimi maskami pridobljenimi z drugimi metodam za določanje mask. Model kljub svoji majhnosti in enostavnosti prikaže obetavne rezultate.

Language:Slovenian
Keywords:združevanje slik, konvolucijske nevronske mreže, globoko učenje, samokodirniki
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150185 This link opens in a new window
COBISS.SI-ID:168447747 This link opens in a new window
Publication date in RUL:14.09.2023
Views:708
Downloads:91
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Image compositing with non-accurate masks
Abstract:
In the field of image compositing most approaches focus on improving the precision of masks that distinguish between foreground and background. As an alternative to computationally intensive and time consuming image matting method, this research aims at achieving similar outcomes using only imprecise masks and the process of deep learning. These imprecise masks were created by deforming given exact masks. The work investigates the impact of different parameters and uses the combination of the most effective ones for the final model. The final model was then tested with a variety of masks obtained from other unrelated methods for foreground mask extraction. Despite its small size and simplicity, the model demonstrates promising results.

Keywords:image compositing, convolutional neural networks, deep learning, autoencoders

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back