izpis_h1_title_alt

Lokalizacija brezpilotnih letalnikov na podlagi satelitskih slik
ID Spagnolo, Gašper (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Dobrevski, Matej (Comentor)

.pdfPDF - Presentation file, Download (25,69 MB)
MD5: 4AFDA0BA24CFFA5EEF5038426C734456

Abstract
Diplomsko delo predstavlja implementacijo trenutno vodilne metode za geolokalizacijo brezpilotnih letalnikov, ob izgubi sistema za določanje položaja; implementacija ni bila javno dostopna. V okviru dela smo ustvarili novo podatkovno zbirko, ki vsebuje pare slik iz brezpilotnega letalnika in pripadajočih satelitskih posnetkov. Osredotočili smo se na uporabo naprednih nevronskih mrež, zlasti na piramidni vision transformer (PVT). Ključno vlogo je imela siamska nevronska mreža za primerjavo vzorcev med obema vrstama slik. Metodologija je bila podprta z različnimi optimizacijskimi strategijami, vključno z uporabo stratificiranega vzorčenja, Hanningovega okna in regularizacijskih tehnik. Rezultati potrjujejo učinkovitost predlagane metode za natančno geolokalizacijo brezpilotnih letalnikov. Delo zaključujemo s poudarkom na ključnih ugotovitvah in potencialu razvite metode.

Language:Slovenian
Keywords:Lokalizacija brezpilotnih letalnikov, geo-lokalizacija, globoko učenje, transformer
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-150184 This link opens in a new window
COBISS.SI-ID:168320771 This link opens in a new window
Publication date in RUL:14.09.2023
Views:1213
Downloads:177
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Unmanned aerial vehicle localization using satellite images
Abstract:
The thesis presents the implementation of the currently leading method for geolocation of unmanned aerial vehicles, in the event of a loss of the positioning system; the implementation was not publicly available. As part of the work, we created a new dataset containing pairs of images from unmanned aerial vehicles and corresponding satellite images. We focused on the use of advanced neural networks, especially the pyramid vision transformer (PVT). A key role was played by the siamese neural network for comparing patterns between the two types of images. The methodology was supported by various optimization strategies, including the use of stratified sampling, the Hanning window, and regularization techniques. The results confirm the effectiveness of the proposed method for accurate geolocation of unmanned aerial vehicles. We conclude the work with an emphasis on key findings and the potential of the developed method.

Keywords:Unmanned aerial vehicle localization, geo-localization, deep learning, transformer.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back