izpis_h1_title_alt

Optimizacija 1,5-dimenzionalnih razrezov
ID KOSEM, PETER (Author), ID Kanduč, Tadej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1016,32 KB)
MD5: B16EFF04DF001C4F7D36E05D4CF04642

Abstract
Diplomska naloga obravnava optimizacijo enoinpoldimenzionalnega problema razreza kovinskih kolutov v dana naročila z minimizacijo stroškov razreza. Problema smo se lotili z definiranjem eksaktnega matematičnega modela za mešano celoštevilsko linearno programiranje, ki smo ga nato implementirali v algebraičnem programskem jeziku AMPL, rešili pa z uporabo programske opreme za reševanje optimizacijskih modelov Gurobi. Izdelana programska rešitev je zmanjšala čas priprave in stroške odpada razreza v podjetju.

Language:Slovenian
Keywords:optimizacija, problem razreza, mešani celoštevilski linearni program
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150174 This link opens in a new window
COBISS.SI-ID:168472579 This link opens in a new window
Publication date in RUL:14.09.2023
Views:990
Downloads:42
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:1.5-dimensional cutting stock problem
Abstract:
The thesis deals with the optimization of a one-and-a-half-dimensional cutting stock problem for metal coils into given orders while minimizing cutting costs. We tackled the problem by defining an exact mathematical model for mixed integer linear programming, which we then implemented using the AMPL algebraic programming language and solved using the Gurobi optimization software. The developed software solution reduced preparation time and cutting waste costs within the company.

Keywords:optimization, cutting stock problem, mixed integer linear programming

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back