izpis_h1_title_alt

Operacijska semantika za jezik s časovno omejenimi viri : magistrsko delo
ID Žajdela, Gašper (Author), ID Pretnar, Matija (Mentor) More about this mentor... This link opens in a new window, ID Ahman, Danel (Comentor)

.pdfPDF - Presentation file, Download (521,90 KB)
MD5: 375CB33D47C76E6969F6949B7D02F3DE
.zipZIP - Appendix, Download (35,45 KB)
MD5: 9F93646A6E7E9E19E4011FA6838C0D45

Abstract
Lambda račun je eden izmed osnovnih matematičnih modelov računanja, kjer uporabljamo le spremenljivke, funkcije (abstrakcije) in aplikacije funkcij. Lahko ga razširimo s tipi in tako dobimo tipizirani lambda račun, ki je jedro funkcijskih programskih jezikov. Tipi v jeziku zagotavljajo varnost, saj preprečujejo, da bi programer na primer seštel število in niz. V delu predstavimo problem, ki nastane pri uporabi jezika v industriji, kjer mora med določenimi procesi preteči dovolj časa. Želimo si, da to reši že sistem tipov. Obstoječi sistemi, kot je OCamlov, tega ne omogočajo. Sistem tipov razširimo z modalnim tipom, ki zagotovi, da vira ne uporabimo, če ni prej preteklo dovolj časa. Za pravilno delo s tovrstnim tipom poskrbita operaciji odvijanje in zavijanje. V tem delu za tovrstni jezik podamo operacijsko semantiko, kjer si za pravilno delo s časovno omejenimi viri pomagamo s stanjem. Dokažemo izrek o varnosti, torej da bo vsak program napisan v tem jeziku ohranil tip in da bo v vsakem trenutku naredil korak, ali pa se ustavil. V delu definiramo enačbe za teorijo enačb za delo s časovno omejenimi viri in dokažemo, da je operacijska semantika skladna s teorijo enačb. Vsi rezultati, razen nekaterih primerov v dokazu skladnosti, so formalizirani z dokazovalnim pomočnikom Agda.

Language:Slovenian
Keywords:lambda račun, časovno omejeni viri, modalni tipi, izrek o varnosti, teorija enačb, skladnost, formalizacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150138 This link opens in a new window
UDC:510.6
COBISS.SI-ID:164319747 This link opens in a new window
Publication date in RUL:14.09.2023
Views:1158
Downloads:99
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Operational semantics for temporal resources
Abstract:
Lambda calculus is one of the fundamental mathematical models of computation, where we utilize variables, function abstractions, and function applications. Further, it can be extended with types, giving rise to the typed lambda calculus, which forms the core of functional programming languages. Types in a language provide safety by preventing, for example, the addition of a number and a string. In this work, we present one of the problems that arises when using a functional language in production, where certain processes need to wait for a specified amount of time to pass. We would like the type system to address this problem. A simple type system, as found in OCaml, does not facilitate this requirement, so the type system can be extended with a modal type, which ensures that a resource is not used unless enough time has passed. For proper handling of this type, unboxing and boxing operations are introduced. In this work, we provide stateful operational semantics for this kind of language, where we use state to handle temporal resources correctly. We prove a safety theorem, ensuring that every program written in this language preserves its type and either steps or halt at every moment. We also define an equational theory for this stateful view of resource useage and prove that evaluation in operational semantics respects the equational theory. All results, apart from some cases of the soundness theorem, have also been formalized using the proof assistant Agda.

Keywords:lambda calculus, temporal resources, modal type, safety theorem, equational theory, soundness, formalization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back