izpis_h1_title_alt

Optimizing Click-Through Rate in Online Advertising Using Cost-Sensitive Learning
ID Petek, Bernarda (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window, ID Jakomin, Martin (Comentor)

.pdfPDF - Presentation file, Download (3,20 MB)
MD5: F8A526BF7658FB5087657318525722B8

Abstract
Real-time bidding is a type of online advertising, which displays personalized advertisements online to users based on their interests in real time. Demand-side platforms participate in such bidding for ad spaces. The bidding price, usually computed using a predicted click-through rate and target cost-per-click, reflects the value of an advertisement to the bidder. The primary focus of research in online advertising revolves around improving the prediction of click-through-rate. We focus on improving click-through-rate prediction for higher-cost advertisements, as they are typically less represented in the dataset, while keeping performance of lower-cost advertisements unaffected. Our approach involves the implementation of cost-sensitive machine learning by weighting the loss function. We explore various mappings of target cost-per-click values as weights. We train our model on the real-world like dataset, using weighted loss functions, resulting in different machine learning models. We evaluate the results with log-loss and calibration metrics. Our results reveal promising outcomes, indicating that some weights improve click-through-rate prediction for higher-cost advertisements while maintaining the quality for lower-cost advertisements.

Language:English
Keywords:real-time bidding, click-through rate prediction, cost-sensitive learning, custom loss function
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-150023 This link opens in a new window
UDC:004.4
COBISS.SI-ID:163981315 This link opens in a new window
Publication date in RUL:13.09.2023
Views:905
Downloads:69
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Optimizacija razmerja med prikazi in kliki pri oglaševanju s cenovno občutljivim učenjem
Abstract:
Spletno oglaševanje omogoča oglaševalcem oglaševanje preko spleta. Dražbe v stvarnem času so en izmed načinov spletnega oglaševanja, ki omogočajo, da so uporabniku prikazani personalizirani oglasi. Na dražbah v stvarnem času v imenu oglaševalcev sodelujejo platforme za samodejno povpraševanje. Oglasi, s katerimi sodelujejo na dražbah, se delijo po dražbeni ceni, ki je odvisna od ciljne cene na klik in napovedane verjetnost za klik na oglas. Napoved verjetnosti klika za posamezen oglas je en izmed temeljnih izzivov v spletnem oglaševanju. Modeli, ki jo napovedujejo, obravnavajo vse oglase enakovredno, ne glede na njihovo ceno. To lahko privede do finančnih izgub. Poraja se vprašanje, ali bi bilo mogoče izboljšati napoved verjetnosti klika za dražje oglase in hkrati ohraniti kakovost napovedi za cenejše oglase. Problema se lotimo s cenovno občutljivim učenjem, tako da iščemo primerne uteži za funkcijo izgube. Z različnimi uteženimi funkcijami izgube učimo model za napovedovanje verjetnosti klika in rezultate evalviramo. Naši rezultati nakazujejo, da lahko uporaba ustreznih uteži izboljša razmerje med prikazi in kliki za dražje oglase in ohrani razmerje za cenejše oglase.

Keywords:dražbe v stvarnem času, optimizacija razmerja med prikazi in kliki, cenovno občutljivo učenje, utežena funkcija izgube

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back