izpis_h1_title_alt

Statistika v kazenskem pravu : delo diplomskega seminarja
ID Kržan, Neža (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (557,39 KB)
MD5: AA744D2486D792CBD07A8059E5E4BF67

Abstract
Diplomsko delo opisuje uporabo verjetnosti in statistike v kazenskem pravu. Statistične metode so temelj kazenskega pravosodja in kriminologije, pa ne le za raziskave, pri katerih so podlaga statistični podatki in analize, ampak tudi za vrednotenje hipotez in dokazov sodnega procesa. Čedalje pogosteje je, da velik del zaključka sodnega procesa temelji na verjetnostnem izračunu vpliva dokazov na začetno in vmesne hipoteze. Koncept verjetnosti temelji na primerjavi verjetnosti dokazov na podlagi dveh konkurenčnih predlogov, in sicer predloga tožilstva in predloga obrambe, in je ključen pri ocenjevanju dokazov, saj nam zagotovi objektivno oceno njihovega vpliva na verjetnost določene domneve oziroma hipoteze. Pri presoji dokazov se uporablja različne metode in nekatere izmed njih sem opisala v diplomskem delu. Najpogosteje uporabljena metoda in tudi ena izmed najbolj razvitih temelji na Bayesovi statistiki. Bayesova statistika je statistična veja, ki nam s pomočjo matematičnih pristopov omogoča posodabljanje predhodnih oziroma apriornih verjetnosti dokazov v aposteriorno verjetnost. Težave se pojavijo pri določitvi predhodnih verjetnosti, saj je deljeno mnenje, kdo naj določi te verjetnosti in na kakšen način. Različne metode za določitev lahko dajejo različne rezultate, kar pa je problematično, saj celotna Bayesova teorija temelji ravno na teh začetnih izračunih. Zaradi verjetnostne oblike Bayesovega izreka za merilo vrednosti dokazov uporabljamo razmerje verjetij. Ker pa je statistika v kazenskem pravu še v razvoju in je znanje ter razumevanje verjetnosti precej omejeno pri odvetnikih, sodnikih in poroti, se pojavlja mnogo zmot. Najbolj znana primera takih zmot sta tožilčeva zmota, ki je dobro znan statistični problem, druga, večja, ki pa izhaja iz prve, pa je zmota obrambnega odvetnika in ker zmoti največkrat nista prepoznani, je posledica lahko tudi napačen zaključek sodnega procesa. Tožilčeva zmota temelji na zamenjavi dveh različnih pogojnih verjetnosti, ki imata zelo različni vrednosti. Pri zmoti obrambnega odvetnika pa dokaze obtoženca, ki se ujemajo z dokazi kaznivega dejanja, štejejo za nepomembne. Večina ostalih zmot prav tako izhaja iz napačnega razumevanja pogojne verjetnosti. Ker so zmote velik problem, opišem tudi nekatere ustrezne pristope za izogib zmotam, pri čemer je po mojem mnenju najbolj učinkovit pristop uporaba Bayesovih omrežij, ker nam pomagajo določiti ustrezne verjetnostne formule v grafičnih modelih, ne da bi prikazali njihovo popolno algebrsko obliko. Bistveno izboljšajo vrednotenje verjetnostnih razmerij, ki se uporabljajo za ocenjevanje dokazov in omogočajo kompleksnejše analize. Za njihovo izdelavo je potreben dosleden okvir, sicer lahko pridemo do različnih rezultatov. Ker pa izračun verjetnosti hipotez in dokazov ponovno temelji na Bayesovi teoriji, se pomanjkljivost Bayesove statistike prenese tudi na Bayesova omrežja.

Language:Slovenian
Keywords:Bayesova statistika, apriorna verjetnost, aposteriorna verjetnost, razmerje verjetij, frekvence, tožilčeva zmota, Bayesova omrežja
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150016 This link opens in a new window
UDC:519.2
COBISS.SI-ID:164307715 This link opens in a new window
Publication date in RUL:13.09.2023
Views:902
Downloads:59
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Criminal justice statistics
Abstract:
In this Bachelor’s thesis we describe the use of probability and statistics in criminal justice. Statistical methods are base of criminal justice and criminology, not only for research based on statistical data and analysis, but also for evaluating hypotheses and evidence in the judicial process. Increasingly, a significant portion of the conclusion of legal proceedings is based on probabilistic calculations of the impact of evidence on initial and intermediate hypotheses. The concept of probability relies on comparing the probability of evidence based on two competing propositions, namely the prosecution's proposition and the defence's proposition, and it is very important in assessing evidence as it provides an objective evaluation of their impact on the probability of a particular assumption or hypothesis. In this Bachelor’s thesis we also describe methods that are used in the evidence assessment. The most frequently used method, and also one of the most developed ones, is based on Bayesian statistics. Bayesian statistics is a statistical branch that employs mathematical approaches to update prior probabilities of evidence into posterior probabilities. Challenges arise in determining prior probabilities, as there is a divided opinion on who should establish these probabilities and in what manner. Different methods of determination can yield different results, which is problematic since the entire Bayesian theory relies on these initial calculations. Due to the probabilistic nature of the Bayesian theorem, the measure of the evidential value uses the likelihood ratio. As statistics in criminal law is still evolving and the knowledge and understanding of probability are quite limited among lawyers, judges, and juries, numerous fallacies arise. The most well-known examples of such fallacies are the Prosecutor's Fallacy, which is a well-known statistical problem, and a more significant fallacy stemming from it, known as the Defence Attorney's Fallacy. Because these fallacies often go unrecognized, their consequence can be an incorrect conclusion in the judicial process. The Prosecutor's Fallacy is based on the confusion of two different conditional probabilities with vastly different values. In the Defence Attorney's Fallacy, evidence presented by the accused that matches evidence of the criminal act is considered insignificant. Most other fallacies also arise from a misunderstanding of conditional probability. Because fallacies are a significant issue, I also describe some appropriate approaches to avoid them. In my opinion, the most effective approach is the use of Bayesian networks, as they help us determine appropriate probability formulas within graphical models without displaying their complete algebraic form. They significantly enhance the evaluation of likelihood ratios used for evidence assessment and enable more complex analyses. Constructing them requires a consistent framework, as inconsistent approaches can yield different results. However, since the computation of hypotheses and evidence probabilities once again relies on Bayesian theory, the imperfections of Bayesian statistics are also transferred to Bayesian networks.

Keywords:Bayesian statistics, priori probability, posterior probability, likelihood ratio, frequencies, prosecutor's fallacy, Bayesian networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back