izpis_h1_title_alt

Strategije za preverjanje izomorfnosti grafov
ID Kreft, Gašper (Author), ID Marc, Tilen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (657,56 KB)
MD5: F3F7ECEDD5DA5DA3123045008436AD1D

Abstract
Problem izomorfizma grafov se ukvarja z vprašanjem, kdaj med poljubnima grafoma obstaja bijektivna preslikava, ki ohranja sosednost vozlišč. Gre za enega redkih znanih problemov, za katerega se ne ve, ali spada v kateregakoli izmed razredov P ali NP-poln. Predstavljen je hevrističen algoritem nauty, ki problem prevede na iskanje kanonične forme. S postopnim barvanjem vozlišč algoritem izpopolnjuje razlikovanje med temi vozlišči in tako gradi drevo kandidatov za kanonično formo. Podobne ideje uporabljajo tudi ostali praktični algoritmi. Čeprav nimajo zagotovila, da za vse grafe delujejo v polinomskem času, se izkaže, da je v večini primerov vendarle tako.

Language:Slovenian
Keywords:izomorfizem grafov, barvanje, kanonična forma
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-149981 This link opens in a new window
COBISS.SI-ID:167082755 This link opens in a new window
Publication date in RUL:12.09.2023
Views:570
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Strategies for the graph isomorphism problem
Abstract:
The graph isomorphism problem deals with the question of whether there exists a bijective mapping between any two graphs that preserves the adjacency of their vertices. This is one of the rare known problems for which the question of their classification into the complexity classes P or NP-complete is still open. A heuristic algorithm nauty is presented, which transforms the problem into a search for the canonical form. Through a process of gradually coloring nodes, the algorithm refines the distinction between them, thereby constructing a tree of candidates for the canonical form. Similar ideas are also employed by other practical algorithms. Although they lack a guarantee of a fast performance for all graphs, it turns out that this is the case in most instances.

Keywords:graph isomorphism, coloring, canonical form

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back