izpis_h1_title_alt

Zaznava izgovorjene besede na sistemu Android
ID MUGERLI, ELIAN (Author), ID Machidon, Octavian-Mihai (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,28 MB)
MD5: BAAC3DD2B91470E4D906492277C5632B

Abstract
V okviru diplomskega dela je implementirana aplikacija za prepoznavo izgovorjenih besed na sistemu Android. Prepoznava se izvaja s pomočjo lokalno shranjenega modela TensorFlow Lite na napravi. Model je naučen s pomočjo značilk MFCC, pridobljenih iz nabora zvočnih posnetkov. Faze delovanja si sledijo tako, da aplikacija najprej zajame zvok na vhodu naprave, ga nato obdela v značilke in na pridobljeni matriki opravi klasifikacijo. Tako dosežemo neprekinjeno prepoznavo besed. Postopek obdelave zvočnega signala v aplikaciji mora biti ekvivalenten postopku obdelave, ki je uporabljen v cevovodu za učenje. Model na testnih podatkih dosega natančnost 88.73%, medtem ko, storitev aplikacije pri uporabniškem testiranju dosega natančnost 82.23% na podatkih v realnem svetu.

Language:Slovenian
Keywords:prepoznava besed, MFCC, mobilna aplikacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149879 This link opens in a new window
COBISS.SI-ID:166292227 This link opens in a new window
Publication date in RUL:11.09.2023
Views:556
Downloads:81
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Custom wake-word detection on Android
Abstract:
As part of the thesis, an Android application for wake word recognition is implemented. Recognition is performed using a locally stored TensorFlow Lite model on the device. The model is trained using MFCCs obtained from a custom set of audio recordings. The application operates by initially capturing audio from the device's input, subsequently transforming it into features, and then conducting classification on the resulting matrix. This process enables us to achieve continuous word recognition. The processing in the application must be equivalent to the processing from the model training. The model achieves an accuracy of 88.73% on test data, while the application, based on user testing, is 82.23% accurate on real-world data.

Keywords:word detection, MFCC, mobile app

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back