Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Schwarzov princip zrcaljenja za harmonične funkcije : delo diplomskega seminarja
ID
Novoselec, Matej
(
Author
),
ID
Drinovec Drnovšek, Barbara
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(923,75 KB)
MD5: CF675557C345E3DC3843294FA08C9B4B
Image galllery
Abstract
Realne harmonične funkcije, dveh realnih oziroma ene kompleksne spremenljivke, so na zvezdastih območjih realni deli holomorfnih funkcij. Lastnost povprečne vrednosti in gladkost holomorfnih funkcij se tako, na zvezdastih območjih, preneseta na harmonične funkcije. Zapisani lastnosti uporabimo pri reševanju Dirichletovega problema za enotski disk. Problem je osnova za vpeljavo pojmov Poissonovega jedra in Poissonovega integrala. Enoličnost in obstoj rešitve Dirichletovega problema, na omejenih enostavno povezanih območji, pa nam omogoča karakterizacijo harmoničnih funkcij prek lastnosti povprečne vrednosti. Omenjena karakterizacija je ključna pri dokazu Schwarzovega principa zrcaljenja za harmonične funkcije.
Language:
Slovenian
Keywords:
harmonična funkcija
,
Laplaceov operator
,
lastnost povprečne vrednosti
,
princip maksima
,
Dirichletov problem
,
Poissonovo jedro
,
Poissonov integral
,
Schwarzov princip zrcaljenja
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2023
PID:
20.500.12556/RUL-149827
UDC:
517.5
COBISS.SI-ID:
163981059
Publication date in RUL:
10.09.2023
Views:
1471
Downloads:
136
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
NOVOSELEC, Matej, 2023,
Schwarzov princip zrcaljenja za harmonične funkcije : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=149827
Copy citation
Share:
Secondary language
Language:
English
Title:
Schwarz reflection principle for harmonic functions
Abstract:
Harmonic functions of two real or one complex variable, defined on star-shaped domains, are real parts of holomorphic functions. Mean value property and smoothness of holomorphic functions are thus, on star-shaped domains, transferred to harmonic functions. We use mentioned properties to solve Dirichlet problem for unit disk. Problem is the basis for introduction of Poisson kernel and Poisson integral. Uniqueness and existence of solution for Dirichlet problem, on bounded simply connected domains, lets us prove characterization of harmonic functions with mean value property. Mentioned characterization is crucial in proof of Schwarz reflection principle for harmonic functions.
Keywords:
harmonic function
,
Laplace operator
,
mean value property
,
maximum principle
,
Dirichlet problem
,
Poisson kernel
,
Poisson integral
,
Schwarz reflection principle
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back