izpis_h1_title_alt

Reševanje problema največje neodvisne množice s kvantnimi žarilniki
ID KRPAN, ALJAŽ (Author), ID Žitnik, Arjana (Mentor) More about this mentor... This link opens in a new window, ID Povh, Janez (Comentor)

.pdfPDF - Presentation file, Download (2,43 MB)
MD5: 253E3EF885C189983C16F9622907DF3E

Abstract
V tem diplomskem delu raziščemo reševanje NP-težkih optimizacijskih problemov z uporabo kvantnih žarilnikov. Na začetku naprej opišemo, kako se je področje kvantnih računalnikov začelo razvijati in kje se nahaja danes. Navedemo nekaj ponudnikov kvantnih storitev za komercialno rabo, pri čemer več pozornosti posvetimo ponudniku D-Wave Systems, saj je računanje na njihovih kvantnih žarilnikih osrednja tema tega diplomskega dela. Nato sledi poglavje o procesu delovanja D-Wavovih kvantnih žarilnikov in o fizikalnih principih, na katerih sloni njihovo delovanje. Namen tega je vzpostaviti intuicijo, kako kvantni žarilnik sploh deluje. Temu sledi poglavje o pretvarjanju optimizacijskih problemov v obliko, primerno za kvantni žarilnik. S tem znanjem se bomo nato lotili problema največje neodvisne množice. Problem bomo definirali in ga pretvorili v primerno obliko za uporabo na kvantnem žarilniku. Pri tem bomo pokazali, katere druge oblike so ravno tako veljavne, vendar manj primerne. Nato bomo največjo neodvisno množico rešili na nekaj klasičnih grafih. Pokazali bomo še postopek, kako lahko dobljene rezultate obdelamo tako, da iz njih izluščimo čim boljšo rešitev. Temu sledi poglavje o zmanjševanju vhodnih podatkov za lažje računanje tega problema. To bomo počeli z razdelitvijo problema v več manjših podproblemov in z redukcijo (odstranjevanjem) vhodnih podatkov, ki ne vplivajo na končno rešitev. To nam bo omogočilo izračun problema pri nekaterih instancah problema, ki so bile prej prevelike za izračun na kvantnem žarilniku. Na koncu bomo še izpeljali algoritem, ki nam omogoča določanje (ne nujno tesne) zgornje meje, ter dodali še nekaj idej za nadaljnjo raziskovanje in izboljšave.

Language:Slovenian
Keywords:kvantni žarilnik, NP-težki problemi, optimizacijski problemi, problem neodvisne množice
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149706 This link opens in a new window
COBISS.SI-ID:166268931 This link opens in a new window
Publication date in RUL:08.09.2023
Views:1000
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Solving the Maximum Independent Set Problem with Quantum Annealers
Abstract:
In this thesis, we investigate the solving of NP-hard optimization problems using quantum annealers. We start by describing how the field of quantum computing began to develop and where it stands today. We list some of the commercial quantum service providers, with more attention given to D-Wave Systems, as computation on their quantum annealers is the focus of this thesis. This is followed by a chapter on the operation process of D-Wave quantum annealers and the physical principles underlying their operation. The aim is to establish an intuition for how a quantum annealer works in the first place. This is followed by a chapter on transforming optimization problems into a form suitable for quantum annealers. With this knowledge, we will then address the maximum independent set problem (sometimes called maximum stable set problem). We will define the problem and convert it into a suitable form for use on a quantum annealer. In doing so, we will demonstrate which other forms are equally valid but less suitable. We will then solve the maximum independent set problem on some classical graphs. Additionally, we will explain how to process the results to extract the best possible solution. We will proceed to reduce the size of the input data to facilitate the computation of this problem. This will be achieved by splitting the problem into several smaller sub-problems and removing input data that does not affect the final solution. This will enable us to compute the problem on some instances of the problem that were previously too large to handle on the quantum annealer. Finally, we will derive an algorithm that allows us to determine a (not necessarily tight) upper bound and present some ideas for further exploration and improvement.

Keywords:quantum annealer, D-Wave Systems, NP-hard problems, optimization problems, independent set problem, stable set problem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back