izpis_h1_title_alt

Primerjava algoritmov za vizualno sledenje gibanja tkiva v endoskopskih videoposnetkih
ID ROJC, JAN (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (979,06 KB)
MD5: 08A403E09F4418CC331099C4EB122F12

Abstract
Endoskopija je medicinski postopek, ki omogoča neinvaziven vpogled v človeške notranje organe s pomočjo kamere. Endoskopske videoposnetke lahko računalniško obdelujemo v realnem času, kar kirurgom omogoča natančnejšo navigacijo med posegom ter sprejemanje informiranih odločitev na podlagi analiziranih podatkov. Pomembno vlogo pri zajemu podatkov iz videoposnetkov ima vizualno sledenje, ki je v endoskopiji še posebej zahtevno zaradi deformacij tkiva in okluzij. Na podatkovni množici Cholec80 smo testirali natančnost sledenja različnih algoritmov, implementiranih v knjižnici OpenCV. Razvili smo anotacijski program, ki smo ga uporabili za označevanje optimalnega sledenja izbranega dela tkiva v vsakem videoposnetku. Na koncu smo rezultate sledilnikov primerjali z anotacijami, da smo ocenili njihovo uspešnost ter določili najboljši sledilnik.

Language:Slovenian
Keywords:vizualni sledilnik, optični tok, endoskopija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-149688 This link opens in a new window
COBISS.SI-ID:165971715 This link opens in a new window
Publication date in RUL:08.09.2023
Views:632
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of algorithms for visual tracking of tissue movement in endoscopic videos
Abstract:
Endoscopy is a medical procedure that provides a non-invasive view of a person's internal organs using a camera. Endoscopic videos can be processed in real time using computer vision methods, allowing surgeons to navigate more accurately during the procedure and make informed decisions based on the analysed data. Visual tracking plays an important role in capturing data from video, which is particularly challenging in endoscopy due to tissue deformations and occlusions. We tested the tracking accuracy of different algorithms implemented in the OpenCV library on the Cholec80 dataset. We developed an annotation software and used it to specify the optimal tracking of a selected tissue segment in each video. Finally, we compared the results of the trackers with the annotations to evaluate their performance and determine the best tracker.

Keywords:visual tracker, optical flow, endoscopy

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back