izpis_h1_title_alt

Baselski problem : delo diplomskega seminarja
ID Kokalj, Anja (Author), ID Drnovšek, Roman (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (334,79 KB)
MD5: EB0A60E44E4F36E5AD2CE184C2C824FA

Abstract
Baselski problem, poimenovan po švicarskem mestu Basel, je že stoletja vznemirjal matematike. Gre za iskanje vsote obratnih vrednosti kvadratov naravnih števil. Le to je uspelo rešiti Eulerju, ki je pokazal, da je vsota enaka $\frac{\pi^2}{6}$. Kasneje je razširil svoje metode in znanje, da je našel zaključene oblike vsot obratnih vrednosti četrtih, šestih in drugih sodih potenc. Vendar ga te metode niso privedle do točne rešitve vsote obratnih vrednosti kubov naravnih števil. Diplomska naloga obravnava reševanje omenjenih problemov in kako je Euler poizkusil ovrednotiti vsoto obratnih vrednosti kubov, tako da jo je pretvoril v vsoto konstante in analitično neizračunljivega integrala.

Language:Slovenian
Keywords:Baselski problem, Zeta funkcija, Apéreyeva konstanta, Kubični baselski problem
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-149630 This link opens in a new window
UDC:511
COBISS.SI-ID:163792643 This link opens in a new window
Publication date in RUL:08.09.2023
Views:595
Downloads:52
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Basel problem
Abstract:
The Basel Problem, named after the Swiss city of Basel, has troubled mathematicians for centuries. It involves finding the sum of the reciprocals of the squares of natural numbers. Euler successfully solved this, demonstrating that the sum is $\frac{\pi^2}{6}$. Later, he expanded his methods and knowledge to find closed-form solutions for sums of reciprocals of 4th, 6th, and other even powers. However, these methods did not lead to an exact solution for the sum of the reciprocals of cubes of natural numbers. The thesis addresses the resolution of these problems and explores Euler's attempt to evaluate the sum of the reciprocals of cubes by transforming it into a sum of a constant and an analytically intractable integral.

Keywords:Basel problem, Zeta function, Apérey's constant, Cubic Basel problem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back