izpis_h1_title_alt

Uporaba globokega učenja za napovedovanje diagnoze in simptomov spektra psihotičnih motenj na podlagi funkcijske konektivnosti : magistrsko delo
ID Avberšek, Lev Kiar (Author), ID Repovš, Grega (Mentor) More about this mentor... This link opens in a new window, ID Demšar, Jure (Co-mentor)

.pdfPDF - Presentation file, Download (5,95 MB)
MD5: A5AE9A3E2507EF872F776BCE0FD930FF

Abstract
Duševne motnje so pojav, ki ga lahko opazujemo na različnih ravneh – od genetike, živčnih vezij in omrežij, kognitivnih procesov do vedenja in doživljanja. Sodobna psihiatrična diagnostika temelji predvsem na opisnih kriterijih sprememb vedenja in doživljanja, kljub temu da te ne odražajo motnje na stopnji nevrobiološkega in kognitivnega sistema. Rezultata počasnega prenosa znanja iz nevroznanosti v klinično psihologijo in psihiatrijo sta visoka komorbidnost med prepoznanimi diagnostičnimi kategorijami ter nizka uspešnost zdravljenja. Možno rešitev podajajo raziskovalni pristopi, ki spodbujajo povezovanje ravni razumevanja duševnih motenj. Mednje sodita računska psihiatrija ter strojno učenje. Namen raziskave je bil preveriti, v kakšni meri nam globoko učenje, podzvrst strojnega učenja, omogoča prepoznati in opisati lastnosti nevrovedenjske geometrije psihotičnih motenj. Natančneje smo v študiji s pomočjo globokega učenja skušali oblikovati modele, ki s pomočjo vzorcev globalne možganske povezanosti napovedujejo diagnozo in mere psihopatologije ter primerjati i) uspešnost dobljenih modelov s predhodnimi študijami, ii) globoko učenje s kanonično korelacijsko analizo in iii) uspešnost modelov pri napovedovanju a priori teoretičnih mer ter empirično pridobljenih indikatorjev psihopatologije. V raziskavo smo vključili odprtodostopen vzorec 636 udeležencev, ki je vključeval 150 oseb z bipolarno motnjo, 119 s shizoafektivno motnjo, 167 s shizofrenijo in 202 osebi brez diagnoze. Oblikovali smo globoke modele za štiri naloge: binarno in multiplo klasifikacijo diagnoz, regresijo a priori teoretičnih mer in empiričnih indikatorjev psihopatologije na podlagi vzorcev globalne možganske povezanosti. Dobljeni modeli so uspešno razlikovali med zdravimi posamezniki in posamezniki z motnjo psihotičnega spektra (98,34 %). Najpomembnejše možganske regije za uspešno delovanje modelov, so se skladale s predhodnimi študijami. Natančnost razlikovanja motenj psihotičnega spektra je bila znatno nižja (56,04 %), notranji procesi globokih modelov pa manj zanesljivi. Nalogi regresije a priori mer psihopatologije in empiričnih indikatorjev sta pokazali, da je globoko učenje zmožno pojasniti več variance kot kanonična korelacijska analiza, vendar nič od tega ne izkazuje zadovoljive posplošljivosti. Modeli globokega učenja so bili nekoliko bolj uspešni pri napovedovanju a priori teoretičnih mer kot empiričnih indikatorjev. Naše ugotovitve kažejo na pomembne potenciale globokega učenja. S pomočjo dostopnih podatkov je mogoče na podlagi funkcijske povezanosti možganov natančno razlikovati med zdravimi in nezdravimi udeleženci ter zajeti kompleksnejše nevrovedenjske vzorce kot kanonična korelacijska analiza. Glede na skladnost notranjih procesov globokih modelov s predhodnimi ugotovitvami o psihotičnih motnjah izkazujejo globoki modeli praktično vrednost kot presejalni instrument. Pri kompleksnejših nalogah uporabljeni globoki modeli niso dosegli zadovoljive posplošljivosti, kar kaže na potrebo po nadaljnjem razvoju modelov ter večjem naboru učnih podatkov.

Language:Slovenian
Keywords:globoko učenje, strojno učenje, podatkovno usmerjene metode, motnje psihotičnega spektra, funkcijska magnetna resonanca
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[L. K. Avberšek]
Year:2023
Number of pages:XV, 85 str.
PID:20.500.12556/RUL-149623 This link opens in a new window
UDC:159.91:616.89(043.2)
COBISS.SI-ID:164944131 This link opens in a new window
Publication date in RUL:08.09.2023
Views:603
Downloads:33
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using deep learning to predict diagnosis and symptoms of psychosis-spectrum disorders based on functional connectivity
Abstract:
Mental disorders are complex phenomena that can be examined on multiple levels, including genetics, neural networks, cognitive processes, behavior, and phenomenology. However, contemporary psychiatric diagnostics primarily rely on descriptive criteria that focus on behavioral and phenomenological alterations, while disregarding neurobiological and cognitive deficits. This gap between neuroscience and clinical psychology has led to high comorbidity rates between disorders and limited success in treatment. To address this issue, novel research paradigms, such as computational psychiatry and machine learning, have emerged, offering potential solutions. In this study, we aimed to explore the potential of deep learning, a subtype of machine learning, in identifying and describing the neurobehavioral features of psychosis spectrum disorders. Specifically, we constructed deep learning models that utilized global brain connectivity measures to predict diagnosis and other psychopathological measures. We compared the performance of our models with those from previous studies, assessed the effectiveness of deep learning compared to canonical correlation analysis, and evaluated the success of deep learning models in predicting psychopathology based on both theoretical and data-driven indicators. Our sample consisted of 636 participants, including 150 diagnosed with bipolar disorder, 119 with schizoaffective disorder, 167 with schizophrenia, and 202 without diagnosis. We trained deep learning models for four tasks: binary and multiple classification of diagnosis, regression of data-driven indicators of psychopathology, and regression of theoretical measures of psychopathology based on global brain connectivity. The models were successful (98.34%) in differentiating between healthy and non-healthy participants, with important brain areas identified consistent with previous studies. However, accuracy in identifying specific psychotic disorders was lower (56.04%), and the internal processes of the models were less reliable. Comparing deep learning to canonical correlation analysis, deep learning models explained more variance in regression tasks. However, the models struggled to generalize to a test sample. Interestingly, deep learning models performed slightly better with theoretical measures of psychopathology compared to data-driven indicators. These findings highlight the potential of deep learning in neuroimaging data analysis, as it enables accurate differentiation between healthy and non-healthy individuals based on accessible data and captures complex neurobehavioral relationships that canonical correlation analysis may miss. Considering the convergence of the deep models' internal processes with previous findings on psychotic disorders, these models may hold practical value as screening tools. Nonetheless, the limitations of the deep learning models in more complex tasks underscore the need for further model development and larger datasets.

Keywords:deep learning, machine learning, data-driven methods, psychosis spectrum disorders, functional magnetic resonance

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back