izpis_h1_title_alt

Lastnosti Pellovih grafov
ID JUG, EVA (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (556,63 KB)
MD5: E6AD9C9A1E9ADC01892BA505B492B6BA

Abstract
V diplomskem delu se osredotočimo na Pellove grafe. Najprej predstavimo osnovne pojme s področja teorije grafov, nato pa še pomembnejše skupine grafov. Opišemo nekatere lastnosti Pellovih grafov ter jih obrazložimo. V poglavju 3 govorimo o lastnostih, ki so neposredno povezane z definicijo sosednosti v Pellovih grafih (dvodelnost, barvanje, prirejanje). Predstavimo kanonično dekompozicijo kot primer rekurzivne dekompozicije. V poglavju 4 opišemo lastnosti, povezane z razdaljami v grafu (polmer, premer, center, periferija). V poglavju 5 povežemo Pellove grafe s Fibonaccijevimi kockami, v poglavju 6 pa še s hiperkockami. V zadnjih dveh poglavjih podamo možno razlago za numerično identiteto, povezano s Fibonaccijevim številom, in vizualno predstavitev grafa Π_5.

Language:Slovenian
Keywords:Pellov graf, Fibonaccijeva kocka, hiperkocka, dvodelen graf, medianski graf
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-149496 This link opens in a new window
COBISS.SI-ID:163909379 This link opens in a new window
Publication date in RUL:07.09.2023
Views:804
Downloads:38
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Pell graph properties
Abstract:
This paper focuses on the Pell graphs. We begin by explaining the basic terminology from the field of graph theory and highlighting some of the more important classes of graphs. We describe several Pell graph properties with additional explanations. In Chapter 3 we talk about properties which are directly linked to the definition of neighbours in Pell graphs (bipartiteness, coloring, matching). We introduce the canonical decomposition as an example of recursive decomposition. In Chapter 4 we describe properties based on distances between vertices (radius, diameter, center, periphery). In Chapter 5 we connect Pell graphs to Fibonacci cubes and in Chapter 6 to hypercubes. In the last two chapters we give a possible explanation for a numerical identity, linked to the Fibonacci numbers, and a visual representation of the graph Π_5.

Keywords:Pell graph, Fibonacci cube, hypercube, bipartite graph, median graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back