izpis_h1_title_alt

Poissonova aproksimacija v Wassersteinovi metriki
ID Bengeri, Katja (Author), ID Raič, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (213,47 KB)
MD5: 720B8B846288A032C422EE32678E2168

Abstract
Delo obravnava poseben primer aproksimacije s Poissonovo porazdelitvijo, in sicer se osredotoči na vsote neodvisnih indikatorjev, ki imajo težko izračunljivo porazdelitev, če indikatorji niso enako porazdeljeni. Z uporabo Chen–Steinove metode in razdalje v Wassersteinovi metriki izpeljemo eksplicitno zgornjo mejo za napako pri aproksimaciji. Kot merilo za odstopanje porazdelitve slučajne spremenljivke X od bolj znane porazdelitve slučajne spremenljivke Y postavimo razliko pričakovanih vrednosti funkcij iz primernega testnega razreda. To razliko pa izrazimo kot tako imenovano Chen–Steinovo pričakovano vrednost: le-ta je enaka nič natanko tedaj, ko ima slučajna spremenljivka X ustrezno Poissonovo porazdelitev. Če pa je Chen–Steinova pričakovana vrednost majhna, je posledično majhno tudi odstopanje od Poissonove porazdelitve.

Language:Slovenian
Keywords:Chen–Steinova metoda, Poissonova aproksimacija, Wassersteinova metrika
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-149487 This link opens in a new window
COBISS.SI-ID:163718147 This link opens in a new window
Publication date in RUL:07.09.2023
Views:958
Downloads:62
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Poisson Approximation in Wasserstein Metric
Abstract:
The work deals with a special case of approximation with the Poisson distribution. Namely, it focuses on the sums of independent indicators, which have a hard-to-calculate distribution if the indicators are not uniformly distributed. We derive an explicit upper bound for the approximation error using the Chen–Stein method and the distance in the Wasserstein metric. As a criterion for the deviation of the distribution of the random variable X from the better-known distribution of the random variable Y, we set the difference of the expected values of the functions from the suitable test class. We express this difference as the so-called Chen–Stein expected value: it is equal to exactly zero when the random variable X has the corresponding Poisson distribution. However, if the Chen–Stein expected value is small, the deviation from the Poisson distribution is consequently also small.

Keywords:Chen–Stein method, Poisson approximation, Wasserstein metric

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back