izpis_h1_title_alt

Optimizacija obdelave oblaka točk za robotsko sledenje 3D površini
ID Korošec, Jurij (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,91 MB)
MD5: 56D1496D6F8D022F0CEF1B741D401261

Abstract
Zdravljenje s pomočjo medicinske robotike prinaša številne prednosti pri terapijah. Globinske 3D kamere omogočajo robotom vizualno zaznavanje okolice in s tem prilagajanje terapij v realnem času. Obdelava oblakov točk, zajetih z globinskimi kamerami, je računsko intenzivna, zato je pomembna dobra optimizacija algoritmov. V okviru diplomske naloge smo vzpostavili merilno mesto, analizirali delovanje programske kode in metode za obdelavo oblaka točk. S parametrizacijo smo poskusili optimizirati obdelavo oblaka točk. Izboljšave smo sproti testirali in jih vrednotili. Rezultati so pokazali, da sta algoritma za iskanje najbližje točke in redčenje oblaka točk najbolj računsko zahtevna.

Language:Slovenian
Keywords:optimizacija, programiranje, 3D, globinske kamere, ROS, PCL, C ++, oblaki točk, parametrizacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[J. Korošec]
Year:2023
Number of pages:XX, 45 str.
PID:20.500.12556/RUL-149405 This link opens in a new window
UDC:004.4:007.52:681.772(043.2)
COBISS.SI-ID:168468995 This link opens in a new window
Publication date in RUL:07.09.2023
Views:1134
Downloads:126
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Optimization of point cloud processing for robotic 3D surface tracking
Abstract:
Medical robotics treatment brings many benefits in rehabilitation and therapy. 3D depth cameras allow robots to visually sense their surroundings and thus adapt therapies in real time. The processing of point clouds captured by depth cameras is computationally intensive, so good optimisation of algorithms is important. As part of the thesis, we set up a measurement site, analysed the performance of the software code and the methods for processing the point cloud. We tried to optimise the processing of the point cloud by parameterisation. Improvements were tested and evaluated on an ongoing basis. The results showed that the nearest point and point cloud thinning algorithms are the most computationally demanding.

Keywords:optimization, programming, 3D, depth sensing cameras, ROS, PCL, C ++, point clouds, parameterisation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back