izpis_h1_title_alt

Algoritem strojnega učenja za sledenje roja mobilnih milirobotov
ID Kleva, Brian (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window, ID Škulj, Gašper (Comentor)

.pdfPDF - Presentation file, Download (2,33 MB)
MD5: BCF6351932751831A07D6172FE102C12

Abstract
Strojno učenje, podveja umetne inteligence, se je v zadnjih letih uveljavilo kot obetavno orodje s sposobnostjo inoviranja industrij, lajšanja vsakdana ter oblikovanja prihodnosti družbe. Zaradi njegovega izjemnega računalniškega potenciala se strojno učenje vedno pogosteje pojavlja tudi za reševanje problemov v večrobotskih sistemih. Detekcijski algoritem YOLOv5 smo s pomočjo strojnega učenja izurili za prepoznavanje milirobotov z računalniškim vidom. Izdelali smo program v programskem jeziku Python, ki s pomočjo izurjenega detekcijskega algoritma in algoritma sledenja DeepSORT omogoča detekcijo in sledenje posameznih milirobotov v roju. Program shranjuje podatke o lokacijah milirobotov in omogoča vizualizacijo njihovega gibanja. Uspešno realizacijo programa smo preverili s pomočjo robotske testne celice s sistemom štirih kamer.

Language:Slovenian
Keywords:računalniški vid, strojno učenje, nevronska mreža, YOLOv5, detekcijski algoritem, algoritem sledenja
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[B. Kleva]
Year:2023
Number of pages:XI, 34 str.
PID:20.500.12556/RUL-149399 This link opens in a new window
UDC:004.434:004.85:004.925(043.2)
COBISS.SI-ID:170786051 This link opens in a new window
Publication date in RUL:07.09.2023
Views:576
Downloads:131
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine learning algorithm for tracking a swarm of mobile millirobots
Abstract:
Machine learning, a branch of artificial intelligence, has established itself in recent years as a promising tool with the ability of innovating industries, making everyday life easier and shaping the future of our society. Due to its extraordinary computational potential, machine learning is increasingly used to solve problems in multi-robot systems. We trained the YOLOv5 detection algorithm with the help of machine learning to recognize individual millirobots using computer vision. We coded a program using the programming language Python, which, with the help of the trained detection algorithm and the DeepSORT tracking algorithm, detects and tracks millirobots in a swarm. The program stores the location data of individual millirobots and enables the visualization of their movements. The program has been tested in a robot test cell with a four-camera system.

Keywords:computer vision, machine learning, neural network, YOLOv5, detection algorithm, tracking algorithm

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back