izpis_h1_title_alt

Primerjava postopkov za iskanje značilnih točk obraza
ID ŠTRUMBELJ, LAVRA (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (48,67 MB)
MD5: 55E7B945080F3289D0017077A8D198F0

Abstract
Vse pogosteje se v našem vsakdanu pojavlja biometrični pristop k identifikaciji posameznikov, kjer algoritmi na podlagi fizioloških ali vedenjskih značilnosti posameznikov, sklepajo o istovetnosti. Diplomsko delo se osredotoča na en korak v tem procesu v sistemih za razpoznavanje obrazov, in sicer na iskanje značilnih obraznih točk v raznih podatkovnih zbirkah slik, ki po navadi predstavlja prvi korak v procesni verigi. Natančneje na primerjavo treh postopkov za določanje značilnih točk obraza, ki temeljijo na algoritmih računalniškega vida, tj.: Metoda z nadzorovanim spustom (ang. Supervised Descent Method - SDM), Globoka konvolucijska mreža z omejitvijo opravil (ang. Tasks-constrained deep convolutional network - TCDCN) in Večcentrska mreža (ang. Multi-Center Network - MCNet). Cilj naloge je razumeti, kako posamezne metode delujejo v različnih razmerah, kako na njihovo delovanje vplivajo karakteristike slik in prikazanih obrazov ter kakšne so njihove prednosti in pomankljivosti. V delu so v začetku predstavljene že izvedene raziskave, ki podajo širši pogled na stanje stroke. V teoretičnem delu je nato predstavljeno osnovno teoretično ozadje določevanja položaja značilnih točk obraza ter izbrani postopki za njihovo določevanje, ki jih analiziramo v delu. V razdelku o metodologiji dela so opisane podatkovne zbirke fotografij, ki smo jih uporabljali pri eksperimentih in metodologija vrednotenja rezultatov. Podrobneje so opisani tudi namestitev in implementacija posameznih metod ter orodja, ki so bila pri tem uporabljena. V okviru diplomskega dela je bilo izvedenih 5 eksperimentov, ki so se osredotočali na preverjanje metod za določene kategorije slik glede na spol, raso in bližino oseb ter glede na pomen barvne informacije slik in pogoje, pod katerimi so bile slike zajete. Predstavljeni so rezultati ter ilustrirane težave, ki so jih metode izkazovale pri iskanju obraznih točk na slikah. V zaključku dela so zbrana še glavna opažanja in izsledki diplomske naloge, na kratko so povzeti doseženi rezultati in podani predlogi za nadaljnje raziskave.

Language:Slovenian
Keywords:značilne točke obraza, SDM, TCDCN, MCNet
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-149350 This link opens in a new window
COBISS.SI-ID:164347651 This link opens in a new window
Publication date in RUL:06.09.2023
Views:1112
Downloads:93
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparative assessment of facial landmarking techniques
Abstract:
Human identification is getting ubiquitous in our everyday lives, where algorithms verify identities based on various physical and behavioural attributes. This thesis is focusing on one step in this process, that is detecting facial landmarks, which is usually the first step in the identification process, on several image databases. Specifically, it compares three detection models, which are based on computer vision. Those are Supervised Descent Method or SDM, Tasks-constrained deep convolutional network or TCDCN for short and Multi-Center Network, also called MCNet. The goal of the thesis is to understand how these methods behave under varying circumstances, how image and facial characteristics influence their success and to determine their respective advantages and disadvantages. Firstly, we lay the foundation with an overview of existing research, that provides a broader view of the state of the profession. In the theoretical part is then presented the basic theoretical background of detecting facial landmarks and the chosen methods for their detection that will be evaluated. The section on the methodology of the work describes the image databases used in the experiments and the methodology for evaluating the results. Installation and implementation of the methods and the tools used are also described in depth. As part of the thesis, 5 experiments were carried out, which focused on the verification of methods for certain categories of images according to gender, race and proximity of persons, as well as according to the importance of the colour information of the images and the conditions they were captured under. Lastly, the results and the problems encountered by the methods in detecting facial landmarks were presented, as well as general observations and findings of the thesis. The achieved results are briefly summarised and suggestions for further research are given.

Keywords:facial landmarks, SDM, TCDCN, MCNet

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back