Zvezno učenje (ZU) je pristop, v katerem množica naprav sodeluje z namenom treniranja modela strojnega učenja. Pri tem si sodelujoče naprave ne izmenjujejo surovih podatkov, tako da ohranja postopek varnost in zasebnost uporabnikovih podatkov. Med težavami, s katerimi se ZU trenutno sooča, je učenje modelov v primerih, ko so podatki na sodelujočih napravah porazdeljeni neenakomerno. V primeru prisotnosti heterogenosti podatkov se kakovost končnih predikcij treniranega modela zmanjša in v najhujših primerih lahko model celo divergira. Med uveljavljenimi pristopi, ki skušajo omiliti negativne posledice heterogenosti podatkov, je gručenje naprav. Sodobne metode gručenja v ZU-ju zahtevajo, da imajo naprave označeno podatkovno množico, ta predpostavka pa omejuje uporabnost takšnih pristopov. V magistrski nalogi predstavimo torej celovito ogrodje in nabor algoritmov, ki omogočijo gručenje naprav, ki nimajo označene podatkovne množice. Poizkusi, ki jih izvedemo v magistrski, kažejo na dejstvo, da predlagani algoritmi dajejo rezultate, ki so primerljivi s tistimi, ki jih dosegajo uveljavljene metode gručenja v ZU-ju. V primerjavi z obstoječimi metodami pa razviti algoritmi omogočijo gručenje naprav, ki niso sodelovale med učenjem zaradi pomanjkanja označenih podatkov oz. zaradi omejenih računskih sposobnosti.
|