izpis_h1_title_alt

Snovanje ravninskih paličij s pomočjo Michellove optimizacijske metode
ID Mubi, Anja (Author), ID Brojan, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,05 MB)
MD5: D6576349716F7EF658C26F53D44E9434

Abstract
V zaključni nalogi se bomo osredotočili na optimizacijo snovanja ravninskih paličij s pomočjo teorije Michellovih struktur, ki je ena izmed teorij v strukturni optimizaciji. Vsak obremenjen sistem lahko obravnavamo na način, da je sestavljen iz mreže točk, ki so med seboj povezane. Tako pretvorimo sistem v paličje, ki ga preračunamo na tlačne in natezne obremenitve. Na podlagi teh vrednosti lahko bolj obremenjenim povečamo presek, manj obremenjenim pa ga zmanjšamo do vrednosti nič. Na ta način sistemu spreminjamo maso in obliko, dokler ne pridemo do optimalnega rezultata glede na dano obremenitev. Sprogramirali bomo kodo, ki omogoča ta preračun. Sprva bomo reševali primere, ki so že znani, na primer konzolni nosilec s točkovno obremenitvijo, nato se bomo lotili čisto svojega primera, ki ga bomo definirali ter ga po optimizaciji tudi trdnostno analizirali v programskem okolju. Zanimal nas ne bo le končni rezultat oz. najbolj optimalna oblika, ampak že vmesno stanje, ki je atraktivno tudi s stališča zunanjega videza.

Language:Slovenian
Keywords:Michell-ove strukture, linearna optimizacija, paličje, statična analiza, nosilec
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[A. Mubi]
Year:2023
Number of pages:XX, 57 str.
PID:20.500.12556/RUL-148745 This link opens in a new window
UDC:658.512.2:624.072.22:539.4(043.2)
COBISS.SI-ID:166419203 This link opens in a new window
Publication date in RUL:31.08.2023
Views:652
Downloads:60
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Design of plane truss systems with Michell's optimization method
Abstract:
In this work, we will focus on optimisation using Michell structure theory, which is one of the theories in structural optimisation. Any loaded system can be viewed as consisting of a network of points that are connected to each other. This converts the system into a truss system, which is then converted to compressive and tensile loads. Based on these values, we can increase the cross-section of the more heavily loaded ones and decrease the cross-section of the less heavily loaded ones to zero. This changes the mass and shape of the system until the optimum result is obtained for a given load. We will design a computer code that allows us to make this calculation. Initially, we will solve examples that are already known, for example a cantilever beam with a point load, to check the code. Then we will work on a case of our own, which we will define and, after optimisation, analyse for strength in the programming environment. We will not only be interested in the final result or the most optimal shape, but also in the intermediate state, which is also attractive in terms of appearance.

Keywords:Michell’s structures, linear optimisation, truss, static analysis, beam

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back