izpis_h1_title_alt

A systematic literature review on under-frequency load shedding protection using clustering methods
ID Škrjanc, Tadej (Avtor), ID Mihalič, Rafael (Avtor), ID Rudež, Urban (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (20,47 MB)
MD5: CA314B5F144510A9B790DDB5E0EE6371
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1364032123001508 Povezava se odpre v novem oknu

Izvleček
System integrity protection schemes safeguard electric power systems’ overall integrity, among which under-frequency load shedding carries a flagship role. Although triggered rarely, it is irreplaceable in protecting the system from tremendous consequences of a blackout. The search for an optimal strategy has produced numerous innovations over the past 30 years, making it easy to lose track of the state-of-the-art due to the abundance. Given the increasing number of system splits in Europe and the ongoing operational paradigm shift, it is expected that existing load shedding concepts are about to be severely challenged. They are already expected to act more flexibly and, in the future, they may even require a complete redesign to support decarbonization efforts. This is why this research aims to provide a systematic review of existing load shedding algorithms. This is done by categorizing the accessible and adequately documented algorithms using machine learning clustering, more specifically, principal component analysis and t-distributed stochastic neighbour embedding combined with density-based spatial clustering of applications with noise. More than 380 publications were examined and both general and specific features were extracted from each of them. The study provides the description of 54 features along with their pros and cons related to their impact on system frequency stability. These efforts resulted in 28 recognized groups of algorithms, which can be helpful to stakeholders involved in securing and studying electric power system stability. The presented clustering proved very useful and can be extended to any technical field suffering from poor clarity of the state-of-the-art.

Jezik:Angleški jezik
Ključne besede:literature review, under-frequency load shedding, t-distributed stochastic neighbour embedding, principal component analysis, machine learning, clustering, power system protection, power system stability, blackouts, power system resilience
Vrsta gradiva:Članek v reviji
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:25 str.
Številčenje:Vol. 180, art. 113294
PID:20.500.12556/RUL-148679 Povezava se odpre v novem oknu
UDK:621.31
ISSN pri članku:1364-0321
DOI:10.1016/j.rser.2023.113294 Povezava se odpre v novem oknu
COBISS.SI-ID:150505475 Povezava se odpre v novem oknu
Datum objave v RUL:29.08.2023
Število ogledov:817
Število prenosov:83
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Renewable & sustainable energy reviews : an international journal
Skrajšan naslov:Renew. sustain. energy rev.
Založnik:Elsevier Science
ISSN:1364-0321
COBISS.SI-ID:44255233 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:pregled literature, podfrekvenčno razbremenjevanje, t-porazdeljena stohastična vložitev sosedov, analiza glavnih komponent, strojno učenje, gručenje, zaščita elektroenergetskega sistema, stabilnost elektroenergetskega sistema, izpad električne energije, odpornost elektroenergetskega sistema

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0356
Naslov:Elektroenergetski sistemi

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:Young researchers

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-9232
Naslov:Upravljanje z viri za zanesljive komunikacije z nizkimi zakasnitvami v pametnih omrežjih - LoLaG

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj